BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 36179087)

  • 1. SpaceX: gene co-expression network estimation for spatial transcriptomics.
    Acharyya S; Zhou X; Baladandayuthapani V
    Bioinformatics; 2022 Nov; 38(22):5033-5041. PubMed ID: 36179087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint Bayesian estimation of cell dependence and gene associations in spatially resolved transcriptomic data.
    Chakrabarti A; Ni Y; Mallick BK
    Sci Rep; 2024 Apr; 14(1):9516. PubMed ID: 38664448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.
    Peng L; He X; Peng X; Li Z; Zhang L
    Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting spatially co-expressed gene clusters with functional coherence by graph-regularized convolutional neural network.
    Song T; Markham KK; Li Z; Muller KE; Greenham K; Kuang R
    Bioinformatics; 2022 Feb; 38(5):1344-1352. PubMed ID: 34864909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPRITE: improving spatial gene expression imputation with gene and cell networks.
    Sun ED; Ma R; Zou J
    Bioinformatics; 2024 Jun; 40(Supplement_1):i521-i528. PubMed ID: 38940132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian modeling of spatial molecular profiling data via Gaussian process.
    Li Q; Zhang M; Xie Y; Xiao G
    Bioinformatics; 2021 Nov; 37(22):4129-4136. PubMed ID: 34146105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DESpace: spatially variable gene detection via differential expression testing of spatial clusters.
    Cai P; Robinson MD; Tiberi S
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38243704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data.
    Ma Y; Liu L; Zhao Y; Hang B; Zhang Y
    BMC Genomics; 2024 Jun; 25(1):566. PubMed ID: 38840049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian multivariate mixture model for high throughput spatial transcriptomics.
    Allen C; Chang Y; Neelon B; Chang W; Kim HJ; Li Z; Ma Q; Chung D
    Biometrics; 2023 Sep; 79(3):1775-1787. PubMed ID: 35895854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NoVaTeST: identifying genes with location-dependent noise variance in spatial transcriptomics data.
    Abrar MA; Kaykobad M; Rahman MS; Samee MAH
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37285319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks.
    Shi X; Zhu J; Long Y; Liang C
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning.
    Tu JJ; Li HS; Yan H; Zhang XF
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covariate-dependent negative binomial factor analysis of RNA sequencing data.
    Zamani Dadaneh S; Zhou M; Qian X
    Bioinformatics; 2018 Jul; 34(13):i61-i69. PubMed ID: 29949981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. spatialGE: quantification and visualization of the tumor microenvironment heterogeneity using spatial transcriptomics.
    Ospina OE; Wilson CM; Soupir AC; Berglund A; Smalley I; Tsai KY; Fridley BL
    Bioinformatics; 2022 Apr; 38(9):2645-2647. PubMed ID: 35258565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network.
    Huo Y; Guo Y; Wang J; Xue H; Feng Y; Chen W; Li X
    J Genet Genomics; 2023 Sep; 50(9):720-733. PubMed ID: 37356752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network Visualization and Analysis of Spatially Aware Gene Expression Data with InsituNet.
    Salamon J; Qian X; Nilsson M; Lynn DJ
    Cell Syst; 2018 May; 6(5):626-630.e3. PubMed ID: 29753646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating multiple variability in spatially resolved transcriptomics with scCube.
    Qian J; Bao H; Shao X; Fang Y; Liao J; Chen Z; Li C; Guo W; Hu Y; Li A; Yao Y; Fan X; Cheng Y
    Nat Commun; 2024 Jun; 15(1):5021. PubMed ID: 38866768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VCNet: vector-based gene co-expression network construction and its application to RNA-seq data.
    Wang Z; Fang H; Tang NL; Deng M
    Bioinformatics; 2017 Jul; 33(14):2173-2181. PubMed ID: 28334366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-modal domain adaptation for revealing spatial functional landscape from spatially resolved transcriptomics.
    Wang L; Hu Y; Xiao K; Zhang C; Shi Q; Chen L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38819253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.