These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 36179498)
1. Fabrication of an aprepitant nanosuspension using hydroxypropyl chitosan to increase the bioavailability. Liu J; Li S; Ao W; Li Y; Xiao Y; Bai M Biochem Biophys Res Commun; 2022 Nov; 631():72-77. PubMed ID: 36179498 [TBL] [Abstract][Full Text] [Related]
2. Development of cyclosporine A nanosuspension: cytotoxicity and permeability on Caco-2 cell lines. Gülbağ Pınar S; Pezik E; Mutlu Ağardan B; Çelebi N Pharm Dev Technol; 2022 Jan; 27(1):52-62. PubMed ID: 34931593 [TBL] [Abstract][Full Text] [Related]
3. Development of surface stabilized candesartan cilexetil nanocrystals with enhanced dissolution rate, permeation rate across CaCo-2, and oral bioavailability. Jain S; Reddy VA; Arora S; Patel K Drug Deliv Transl Res; 2016 Oct; 6(5):498-510. PubMed ID: 27129488 [TBL] [Abstract][Full Text] [Related]
4. Cefdinir nanosuspension for improved oral bioavailability by media milling technique: formulation, characterization and in vitro-in vivo evaluations. Sawant KK; Patel MH; Patel K Drug Dev Ind Pharm; 2016; 42(5):758-68. PubMed ID: 26548349 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of Nanosuspension Directly Loaded Fast-Dissolving Films for Enhanced Oral Bioavailability of Olmesartan Medoxomil: In Vitro Characterization and Pharmacokinetic Evaluation in Healthy Human Volunteers. Alsofany JM; Hamza MY; Abdelbary AA AAPS PharmSciTech; 2018 Jul; 19(5):2118-2132. PubMed ID: 29700766 [TBL] [Abstract][Full Text] [Related]
6. A new nanosuspension prepared with wet milling method for oral delivery of highly variable drug Cyclosporine A: development, optimization and in vivo evaluation. Pınar SG; Canpınar H; Tan Ç; Çelebi N Eur J Pharm Sci; 2022 Apr; 171():106123. PubMed ID: 35017012 [TBL] [Abstract][Full Text] [Related]
7. Formulation, optimization and in vitro-in vivo evaluation of febuxostat nanosuspension. Ahuja BK; Jena SK; Paidi SK; Bagri S; Suresh S Int J Pharm; 2015 Jan; 478(2):540-52. PubMed ID: 25490182 [TBL] [Abstract][Full Text] [Related]
8. Enhanced biopharmaceutical performance of brick dust molecule nilotinib via stabilized amorphous nanosuspension using a facile acid-base neutralization approach. Chougule M; Sirvi A; Saini V; Kashyap M; Sangamwar AT Drug Deliv Transl Res; 2023 Oct; 13(10):2503-2519. PubMed ID: 37024611 [TBL] [Abstract][Full Text] [Related]
10. Development of an amorphous nanosuspension by sonoprecipitation-formulation and process optimization using design of experiment methodology. Gajera BY; Shah DA; Dave RH Int J Pharm; 2019 Mar; 559():348-359. PubMed ID: 30721724 [TBL] [Abstract][Full Text] [Related]
11. Preparation and Characterization of Celecoxib Nanosuspension Using Bead Milling. Kim HI; Jee JP; Kim ST; Kang D; Kim YC; Kim HC; Park SY; Lee HM; Cho KH; Kim DY; Choi SU; Jang DJ J Nanosci Nanotechnol; 2019 Feb; 19(2):1184-1187. PubMed ID: 30360230 [TBL] [Abstract][Full Text] [Related]
12. Isoliquiritigenin Nanosuspension Enhances Cytostatic Effects in A549 Lung Cancer Cells. Qiao F; Zhao Y; Mai Y; Guo J; Dong L; Zhang W; Yang J Planta Med; 2020 May; 86(8):538-547. PubMed ID: 32294789 [TBL] [Abstract][Full Text] [Related]
13. Preparation, Characterization and In Vivo Assessment of Repaglinide Nanosuspension for Oral Bioavailability Improvement. Zawar LR; Bari SB Recent Pat Drug Deliv Formul; 2018; 12(3):162-169. PubMed ID: 30003863 [TBL] [Abstract][Full Text] [Related]
14. Nasal delivery of nanosuspension-based mucoadhesive formulation with improved bioavailability of loratadine: Preparation, characterization, and in vivo evaluation. Alshweiat A; Csóka I; Tömösi F; Janáky T; Kovács A; Gáspár R; Sztojkov-Ivanov A; Ducza E; Márki Á; Szabó-Révész P; Ambrus R Int J Pharm; 2020 Apr; 579():119166. PubMed ID: 32084574 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of Ibrutinib Nanosuspension by Quality by Design Approach: Intended for Enhanced Oral Bioavailability and Diminished Fast Fed Variability. Rangaraj N; Pailla SR; Chowta P; Sampathi S AAPS PharmSciTech; 2019 Oct; 20(8):326. PubMed ID: 31659558 [TBL] [Abstract][Full Text] [Related]
16. Ginkgolides-loaded soybean phospholipid-stabilized nanosuspension with improved storage stability and in vivo bioavailability. Wang P; Cao X; Chu Y; Wang P Colloids Surf B Biointerfaces; 2019 Sep; 181():910-917. PubMed ID: 31382340 [TBL] [Abstract][Full Text] [Related]
17. A quality-by-design study to develop Nifedipine nanosuspension: examining the relative impact of formulation variables, wet media milling process parameters and excipient variability on drug product quality attributes. Patel PJ; Gajera BY; Dave RH Drug Dev Ind Pharm; 2018 Dec; 44(12):1942-1952. PubMed ID: 30027778 [TBL] [Abstract][Full Text] [Related]
18. Preparation and evaluation of wet-milled usnic acid nanocrystal suspension for better bioaffinity. Qu C; Zhang L; Du X; Zhang X; Zheng J; Zhao Y; Tu P Drug Dev Ind Pharm; 2018 May; 44(5):707-712. PubMed ID: 29183154 [TBL] [Abstract][Full Text] [Related]
19. Study of Formulation and Process Variables for Optimization of Piroxicam Nanosuspension Using 3 Alhamhoom Y; Honmane SM; Hani U; Osmani RAM; Kandasamy G; Vasudevan R; Paramshetti S; R Dudhal R; K Kengar N; Charde MS Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771784 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and characterization of glimepiride nanosuspension by ultrasonication-assisted precipitation for improvement of oral bioavailability and in vitro α-glucosidase inhibition. Rahim H; Sadiq A; Khan S; Amin F; Ullah R; Shahat AA; Mahmood HM Int J Nanomedicine; 2019; 14():6287-6296. PubMed ID: 31496686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]