These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36179589)

  • 1. Origin of spurious intensity in vacuum near sample edge in bright field TEM images.
    Hayashida M; Malac M; Yamasaki J
    Micron; 2022 Nov; 162():103348. PubMed ID: 36179589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Energy Electron Scattering in
    Hayashida M; Malac M
    Microsc Microanal; 2022 Mar; ():1-13. PubMed ID: 35343421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-film-based Zernike phase plates with smooth thickness gradient for phase-contrast transmission electron microscopy with reduced fringing artefacts.
    Obermair M; Hettler S; Dries M; Hugenschmidt M; Spiecker R; Gerthsen D
    J Microsc; 2022 Jul; 287(1):45-58. PubMed ID: 35438194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thick specimens in the CEM and STEM. Resolution and image formation.
    Groves T
    Ultramicroscopy; 1975 Jul; 1(1):15-31. PubMed ID: 1236017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative intensity measurement of equal thickness fringes in Si and MgO crystal images with an energy-filtering transmission electron microscope using an imaging plate.
    Nishio K; Isshiki T; Shiojiri M
    J Electron Microsc (Tokyo); 2000; 49(5):607-19. PubMed ID: 11110467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope.
    Wang P; Behan G; Kirkland AI; Nellist PD; Cosgriff EC; D'Alfonso AJ; Morgan AJ; Allen LJ; Hashimoto A; Takeguchi M; Mitsuishi K; Shimojo M
    Ultramicroscopy; 2011 Jun; 111(7):877-86. PubMed ID: 21093152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of nonlinear intensity attenuation in bright-field TEM images for correct 3D reconstruction of the density in micron-sized materials.
    Yamasaki J; Mutoh M; Ohta S; Yuasa S; Arai S; Sasaki K; Tanaka N
    Microscopy (Oxf); 2014 Oct; 63(5):345-55. PubMed ID: 24891385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear intensity attenuation with increasing thickness and quantitative TEM tomography of micron-sized materials.
    Yamasaki J
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i5-i6. PubMed ID: 25359843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of convergent beam semiangle on image intensity in HAADF STEM images.
    Kuramochi K; Kotaka Y; Yamazaki T; Ohtsuka M; Hashimoto I; Watanabe K
    Acta Crystallogr A; 2010 Jan; 66(Pt 1):10-6. PubMed ID: 20029128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4D electron microscopy: principles and applications.
    Flannigan DJ; Zewail AH
    Acc Chem Res; 2012 Oct; 45(10):1828-39. PubMed ID: 22967215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validity of the dipole approximation in TEM-EELS studies.
    Egerton RF; Mcleod RA; Malac M
    Microsc Res Tech; 2014 Oct; 77(10):773-8. PubMed ID: 25045082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal strategies for imaging thick biological specimens: exit wavefront reconstruction and energy-filtered imaging.
    Han KF; Gubbens AJ; Sedat JW; Agard DA
    J Microsc; 1996 Aug; 183(Pt 2):124-32. PubMed ID: 8805824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local thickness measurement through scattering contrast and electron energy-loss spectroscopy.
    Zhang HR; Egerton RF; Malac M
    Micron; 2012 Jan; 43(1):8-15. PubMed ID: 21803591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method to detect and correct sample tilt in scanning transmission electron microscopy bright-field imaging.
    Brown HG; Ishikawa R; Sánchez-Santolino G; Lugg NR; Ikuhara Y; Allen LJ; Shibata N
    Ultramicroscopy; 2017 Feb; 173():76-83. PubMed ID: 27987470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lorentzian-like image blur of gold nanoparticles on thick amorphous silicon films in ultra-high-voltage transmission electron microscopy.
    Oshima Y; Nishi R; Asayama K; Arakawa K; Yoshida K; Sakata T; Taguchi E; Yasuda H
    Microscopy (Oxf); 2013; 62(5):521-31. PubMed ID: 23677968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle.
    Woehl T; Keller R
    Ultramicroscopy; 2016 Dec; 171():166-176. PubMed ID: 27690347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Use of Low Vacuum Scanning Electron Microscopy (LVSEM) to Analyze Peripheral Nerve Samples.
    Bond P; Parkinson DB
    Methods Mol Biol; 2018; 1739():349-357. PubMed ID: 29546719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. End-to-end image analysis pipeline for liquid-phase electron microscopy.
    Marchello G; DE Pace C; Duro-Castano A; Battaglia G; Ruiz-PÉrez L
    J Microsc; 2020 Sep; 279(3):242-248. PubMed ID: 32157689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Major Factors Influencing the Size Distribution Analysis of Cellulose Nanocrystals Imaged in Transmission Electron Microscopy.
    Qian H
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experiments on inelastic electron holography.
    Potapov PL; Lichte H; Verbeeck J; van Dyck D
    Ultramicroscopy; 2006; 106(11-12):1012-8. PubMed ID: 16934930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.