BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36179630)

  • 1. Bipolar electrochemical rotors for the direct transduction of molecular chiral information.
    Arnaboldi S; Salinas G; Bonetti G; Cirilli R; Benincori T; Kuhn A
    Biosens Bioelectron; 2022 Dec; 218():114740. PubMed ID: 36179630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid light-emitting devices for the straightforward readout of chiral information.
    Salinas G; Arnaboldi S; Bonetti G; Cirilli R; Benincori T; Kuhn A
    Chirality; 2021 Dec; 33(12):875-882. PubMed ID: 34617330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bipolar Electrochemical Measurement of Enantiomeric Excess with Inherently Chiral Polymer Actuators.
    Arnaboldi S; Salinas G; Bonetti G; Cirilli R; Benincori T; Kuhn A
    ACS Meas Sci Au; 2021 Dec; 1(3):110-116. PubMed ID: 34939074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct dynamic read-out of molecular chirality with autonomous enzyme-driven swimmers.
    Arnaboldi S; Salinas G; Karajić A; Garrigue P; Benincori T; Bonetti G; Cirilli R; Bichon S; Gounel S; Mano N; Kuhn A
    Nat Chem; 2021 Dec; 13(12):1241-1247. PubMed ID: 34650234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute Chiral Recognition with Hybrid Wireless Electrochemical Actuators.
    Arnaboldi S; Gupta B; Benincori T; Bonetti G; Cirilli R; Kuhn A
    Anal Chem; 2020 Jul; 92(14):10042-10047. PubMed ID: 32551513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating the Enantiodiscrimination Features of Inherently Chiral Selectors by Molecular Design: A HPLC and Voltammetry Study Case with Atropisomeric 2,2'-Biindole-Based Monomers and Oligomer Films.
    Scapinello L; Grecchi S; Rossi S; Arduini F; Arnaboldi S; Penoni A; Cirilli R; Romana Mussini P; Benincori T
    Chemistry; 2021 Sep; 27(52):13190-13202. PubMed ID: 34170583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wireless electrochemical actuation of soft materials towards chiral stimuli.
    Arnaboldi S
    Chem Commun (Camb); 2023 Feb; 59(15):2072-2080. PubMed ID: 36748650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a chiral electrochemical sensor based on copper-amino acid mercaptide nanorods for enantioselective discrimination of tryptophan enantiomers.
    Pan QX; Yang YC; Zhao NN; Zhang B; Cui L; Zhang CY
    Anal Chim Acta; 2023 Sep; 1272():341480. PubMed ID: 37355327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous electrochemical recognition of tryptophan and penicillamine enantiomers based on MOF-modified β-CD.
    Hou Y; Liang J; Kuang X; Kuang R
    Carbohydr Polym; 2022 Aug; 290():119474. PubMed ID: 35550750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft Nanoarchitectonics for Enantioselective Biosensing.
    Liu J; Zhou H; Yang W; Ariga K
    Acc Chem Res; 2020 Mar; 53(3):644-653. PubMed ID: 32073816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral magnetic-nanobiofluids for rapid electrochemical screening of enantiomers at a magneto nanocomposite graphene-paste electrode.
    Muñoz J; González-Campo A; Riba-Moliner M; Baeza M; Mas-Torrent M
    Biosens Bioelectron; 2018 May; 105():95-102. PubMed ID: 29412951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical recognition of tryptophan enantiomers using a multi-walled carbon nanotube@polydopamine composite loaded with copper(II).
    Qian J; Yi Y; Zhang D; Zhu G
    Mikrochim Acta; 2019 May; 186(6):358. PubMed ID: 31098704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless electromechanical enantio-responsive valves.
    Salinas G; Malacarne F; Bonetti G; Cirilli R; Benincori T; Arnaboldi S; Kuhn A
    Chirality; 2023 Feb; 35(2):110-117. PubMed ID: 36513396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient versus Null Electrochemical Enantioselective Recognition Controlled by Achiral Colinkers in Homochiral Metal-Organic Frameworks.
    Huang Y; Wang YY; An R; Gao EQ; Yue Q
    ACS Sens; 2023 Feb; 8(2):774-783. PubMed ID: 36734613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Common materials, extraordinary behavior: An ultrasensitive and enantioselective strategy for D-Tryptophan recognition based on electrochemical Au@p-L-cysteine chiral interface.
    Deng Y; Zhang Z; Pang Y; Zhou X; Wang Y; Zhang Y; Yuan Y
    Anal Chim Acta; 2022 Sep; 1227():340331. PubMed ID: 36089298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition.
    Liu N; Liu J; Niu X; Wang J; Guo R; Mo Z
    Mikrochim Acta; 2021 Apr; 188(5):163. PubMed ID: 33839948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantiomeric Recognition and Separation by Chiral Nanoparticles.
    Gogoi A; Mazumder N; Konwer S; Ranawat H; Chen NT; Zhuo GY
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30871182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers.
    Zou J; Lan XW; Zhao GQ; Huang ZN; Liu YP; Yu JG
    Mikrochim Acta; 2020 Nov; 187(11):636. PubMed ID: 33141322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral PEDOT-Based Enantioselective Electrode Modification Material for Chiral Electrochemical Sensing: Mechanism and Model of Chiral Recognition.
    Dong L; Zhang Y; Duan X; Zhu X; Sun H; Xu J
    Anal Chem; 2017 Sep; 89(18):9695-9702. PubMed ID: 28809103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-based hybrid for enantioselective sensing applications.
    Zor E; Morales-Narváez E; Alpaydin S; Bingol H; Ersoz M; Merkoçi A
    Biosens Bioelectron; 2017 Jan; 87():410-416. PubMed ID: 27589404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.