These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 36179666)

  • 1. Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes.
    Ringel AR; Szabo Q; Chiariello AM; Chudzik K; Schöpflin R; Rothe P; Mattei AL; Zehnder T; Harnett D; Laupert V; Bianco S; Hetzel S; Glaser J; Phan MHQ; Schindler M; Ibrahim DM; Paliou C; Esposito A; Prada-Medina CA; Haas SA; Giere P; Vingron M; Wittler L; Meissner A; Nicodemi M; Cavalli G; Bantignies F; Mundlos S; Robson MI
    Cell; 2022 Sep; 185(20):3689-3704.e21. PubMed ID: 36179666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of 3D genome organization, guided by cohesin and CTCF looping, on sex-biased chromatin interactions and gene expression in mouse liver.
    Matthews BJ; Waxman DJ
    Epigenetics Chromatin; 2020 Jul; 13(1):30. PubMed ID: 32680543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.
    Poterlowicz K; Yarker JL; Malashchuk I; Lajoie BR; Mardaryev AN; Gdula MR; Sharov AA; Kohwi-Shigematsu T; Botchkarev VA; Fessing MY
    PLoS Genet; 2017 Sep; 13(9):e1006966. PubMed ID: 28863138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple CTCF sites cooperate with each other to maintain a TAD for enhancer-promoter interaction in the β-globin locus.
    Kang J; Kim YW; Park S; Kang Y; Kim A
    FASEB J; 2021 Aug; 35(8):e21768. PubMed ID: 34245617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding.
    Hsieh TS; Cattoglio C; Slobodyanyuk E; Hansen AS; Rando OJ; Tjian R; Darzacq X
    Mol Cell; 2020 May; 78(3):539-553.e8. PubMed ID: 32213323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo.
    Hanssen LLP; Kassouf MT; Oudelaar AM; Biggs D; Preece C; Downes DJ; Gosden M; Sharpe JA; Sloane-Stanley JA; Hughes JR; Davies B; Higgs DR
    Nat Cell Biol; 2017 Aug; 19(8):952-961. PubMed ID: 28737770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.
    Glinsky GV
    Chromosome Res; 2018 Mar; 26(1-2):61-84. PubMed ID: 29335803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active enhancers strengthen insulation by RNA-mediated CTCF binding at chromatin domain boundaries.
    Islam Z; Saravanan B; Walavalkar K; Farooq U; Singh AK; Radhakrishnan S; Thakur J; Pandit A; Henikoff S; Notani D
    Genome Res; 2023 Jan; 33(1):1-17. PubMed ID: 36650052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver.
    Matthews BJ; Waxman DJ
    Elife; 2018 May; 7():. PubMed ID: 29757144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression.
    Vos ESM; Valdes-Quezada C; Huang Y; Allahyar A; Verstegen MJAM; Felder AK; van der Vegt F; Uijttewaal ECH; Krijger PHL; de Laat W
    Mol Cell; 2021 Aug; 81(15):3082-3095.e6. PubMed ID: 34197738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coming full circle: On the origin and evolution of the looping model for enhancer-promoter communication.
    Popay TM; Dixon JR
    J Biol Chem; 2022 Aug; 298(8):102117. PubMed ID: 35691341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cohesin is required for long-range enhancer action at the Shh locus.
    Kane L; Williamson I; Flyamer IM; Kumar Y; Hill RE; Lettice LA; Bickmore WA
    Nat Struct Mol Biol; 2022 Sep; 29(9):891-897. PubMed ID: 36097291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Embryonic Stem Cells.
    Cuadrado A; Giménez-Llorente D; Kojic A; Rodríguez-Corsino M; Cuartero Y; Martín-Serrano G; Gómez-López G; Marti-Renom MA; Losada A
    Cell Rep; 2019 Jun; 27(12):3500-3510.e4. PubMed ID: 31216471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A complex regulatory landscape involved in the development of mammalian external genitals.
    Amândio AR; Lopez-Delisle L; Bolt CC; Mascrez B; Duboule D
    Elife; 2020 Apr; 9():. PubMed ID: 32301703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders.
    Gómez-Marín C; Tena JJ; Acemel RD; López-Mayorga M; Naranjo S; de la Calle-Mustienes E; Maeso I; Beccari L; Aneas I; Vielmas E; Bovolenta P; Nobrega MA; Carvajal J; Gómez-Skarmeta JL
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7542-7. PubMed ID: 26034287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure.
    Hou Y; Li F; Zhang R; Li S; Liu H; Qin ZS; Sun X
    Epigenetics; 2019 Sep; 14(9):894-911. PubMed ID: 31177910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional dissection of the Sox9-Kcnj2 locus identifies nonessential and instructive roles of TAD architecture.
    Despang A; Schöpflin R; Franke M; Ali S; Jerković I; Paliou C; Chan WL; Timmermann B; Wittler L; Vingron M; Mundlos S; Ibrahim DM
    Nat Genet; 2019 Aug; 51(8):1263-1271. PubMed ID: 31358994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZNF143 deletion alters enhancer/promoter looping and CTCF/cohesin geometry.
    Zhang M; Huang H; Li J; Wu Q
    Cell Rep; 2024 Jan; 43(1):113663. PubMed ID: 38206813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation.
    Kubo N; Ishii H; Xiong X; Bianco S; Meitinger F; Hu R; Hocker JD; Conte M; Gorkin D; Yu M; Li B; Dixon JR; Hu M; Nicodemi M; Zhao H; Ren B
    Nat Struct Mol Biol; 2021 Feb; 28(2):152-161. PubMed ID: 33398174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clustered CTCF binding is an evolutionary mechanism to maintain topologically associating domains.
    Kentepozidou E; Aitken SJ; Feig C; Stefflova K; Ibarra-Soria X; Odom DT; Roller M; Flicek P
    Genome Biol; 2020 Jan; 21(1):5. PubMed ID: 31910870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.