These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 36179666)
21. Tandem CTCF sites function as insulators to balance spatial chromatin contacts and topological enhancer-promoter selection. Jia Z; Li J; Ge X; Wu Y; Guo Y; Wu Q Genome Biol; 2020 Mar; 21(1):75. PubMed ID: 32293525 [TBL] [Abstract][Full Text] [Related]
22. HOTTIP-dependent R-loop formation regulates CTCF boundary activity and TAD integrity in leukemia. Luo H; Zhu G; Eshelman MA; Fung TK; Lai Q; Wang F; Zeisig BB; Lesperance J; Ma X; Chen S; Cesari N; Cogle C; Chen B; Xu B; Yang FC; So CWE; Qiu Y; Xu M; Huang S Mol Cell; 2022 Feb; 82(4):833-851.e11. PubMed ID: 35180428 [TBL] [Abstract][Full Text] [Related]
23. Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF. Aljahani A; Hua P; Karpinska MA; Quililan K; Davies JOJ; Oudelaar AM Nat Commun; 2022 Apr; 13(1):2139. PubMed ID: 35440598 [TBL] [Abstract][Full Text] [Related]
24. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. Wutz G; Várnai C; Nagasaka K; Cisneros DA; Stocsits RR; Tang W; Schoenfelder S; Jessberger G; Muhar M; Hossain MJ; Walther N; Koch B; Kueblbeck M; Ellenberg J; Zuber J; Fraser P; Peters JM EMBO J; 2017 Dec; 36(24):3573-3599. PubMed ID: 29217591 [TBL] [Abstract][Full Text] [Related]
25. Chromatin Architecture in the Fly: Living without CTCF/Cohesin Loop Extrusion?: Alternating Chromatin States Provide a Basis for Domain Architecture in Drosophila. Matthews NE; White R Bioessays; 2019 Sep; 41(9):e1900048. PubMed ID: 31264253 [TBL] [Abstract][Full Text] [Related]
26. Making sense of the linear genome, gene function and TADs. Long HS; Greenaway S; Powell G; Mallon AM; Lindgren CM; Simon MM Epigenetics Chromatin; 2022 Jan; 15(1):4. PubMed ID: 35090532 [TBL] [Abstract][Full Text] [Related]
27. Chromatin topology and the timing of enhancer function at the Rodríguez-Carballo E; Lopez-Delisle L; Willemin A; Beccari L; Gitto S; Mascrez B; Duboule D Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31231-31241. PubMed ID: 33229569 [TBL] [Abstract][Full Text] [Related]
28. Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes. Rinzema NJ; Sofiadis K; Tjalsma SJD; Verstegen MJAM; Oz Y; Valdes-Quezada C; Felder AK; Filipovska T; van der Elst S; de Andrade Dos Ramos Z; Han R; Krijger PHL; de Laat W Nat Struct Mol Biol; 2022 Jun; 29(6):563-574. PubMed ID: 35710842 [TBL] [Abstract][Full Text] [Related]
29. The human β-globin enhancer LCR HS2 plays a role in forming a TAD by activating chromatin structure at neighboring CTCF sites. Kim J; Kang J; Kim YW; Kim A FASEB J; 2021 Jun; 35(6):e21669. PubMed ID: 34033138 [TBL] [Abstract][Full Text] [Related]
30. Identifying cis Elements for Spatiotemporal Control of Mammalian DNA Replication. Sima J; Chakraborty A; Dileep V; Michalski M; Klein KN; Holcomb NP; Turner JL; Paulsen MT; Rivera-Mulia JC; Trevilla-Garcia C; Bartlett DA; Zhao PA; Washburn BK; Nora EP; Kraft K; Mundlos S; Bruneau BG; Ljungman M; Fraser P; Ay F; Gilbert DM Cell; 2019 Feb; 176(4):816-830.e18. PubMed ID: 30595451 [TBL] [Abstract][Full Text] [Related]
31. Transcriptional regulation and chromatin architecture maintenance are decoupled functions at the Taylor T; Sikorska N; Shchuka VM; Chahar S; Ji C; Macpherson NN; Moorthy SD; de Kort MAC; Mullany S; Khader N; Gillespie ZE; Langroudi L; Tobias IC; Lenstra TL; Mitchell JA; Sexton T Genes Dev; 2022 Jun; 36(11-12):699-717. PubMed ID: 35710138 [TBL] [Abstract][Full Text] [Related]
32. Enhancer accessibility and CTCF occupancy underlie asymmetric TAD architecture and cell type specific genome topology. Barrington C; Georgopoulou D; Pezic D; Varsally W; Herrero J; Hadjur S Nat Commun; 2019 Jul; 10(1):2908. PubMed ID: 31266948 [TBL] [Abstract][Full Text] [Related]
33. Chromatin architecture reorganization during neuronal cell differentiation in Chathoth KT; Zabet NR Genome Res; 2019 Apr; 29(4):613-625. PubMed ID: 30709849 [TBL] [Abstract][Full Text] [Related]
35. Topologically associating domain boundaries that are stable across diverse cell types are evolutionarily constrained and enriched for heritability. McArthur E; Capra JA Am J Hum Genet; 2021 Feb; 108(2):269-283. PubMed ID: 33545030 [TBL] [Abstract][Full Text] [Related]
36. CTCF mediates dosage- and sequence-context-dependent transcriptional insulation by forming local chromatin domains. Huang H; Zhu Q; Jussila A; Han Y; Bintu B; Kern C; Conte M; Zhang Y; Bianco S; Chiariello AM; Yu M; Hu R; Tastemel M; Juric I; Hu M; Nicodemi M; Zhuang X; Ren B Nat Genet; 2021 Jul; 53(7):1064-1074. PubMed ID: 34002095 [TBL] [Abstract][Full Text] [Related]
37. CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains. Llères D; Moindrot B; Pathak R; Piras V; Matelot M; Pignard B; Marchand A; Poncelet M; Perrin A; Tellier V; Feil R; Noordermeer D Genome Biol; 2019 Dec; 20(1):272. PubMed ID: 31831055 [TBL] [Abstract][Full Text] [Related]
38. Induction of a chromatin boundary in vivo upon insertion of a TAD border. Willemin A; Lopez-Delisle L; Bolt CC; Gadolini ML; Duboule D; Rodriguez-Carballo E PLoS Genet; 2021 Jul; 17(7):e1009691. PubMed ID: 34292939 [TBL] [Abstract][Full Text] [Related]
39. CHD4 Conceals Aberrant CTCF-Binding Sites at TAD Interiors by Regulating Chromatin Accessibility in Mouse Embryonic Stem Cells. Han S; Lee H; Lee AJ; Kim SK; Jung I; Koh GY; Kim TK; Lee D Mol Cells; 2021 Nov; 44(11):805-829. PubMed ID: 34764232 [TBL] [Abstract][Full Text] [Related]