These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36179695)

  • 1. TGFβ superfamily signaling regulates the state of human stem cell pluripotency and capacity to create well-structured telencephalic organoids.
    Watanabe M; Buth JE; Haney JR; Vishlaghi N; Turcios F; Elahi LS; Gu W; Pearson CA; Kurdian A; Baliaouri NV; Collier AJ; Miranda OA; Dunn N; Chen D; Sabri S; Torre-Ubieta L; Clark AT; Plath K; Christofk HR; Kornblum HI; Gandal MJ; Novitch BG
    Stem Cell Reports; 2022 Oct; 17(10):2220-2238. PubMed ID: 36179695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells.
    Osnato A; Brown S; Krueger C; Andrews S; Collier AJ; Nakanoh S; Quiroga Londoño M; Wesley BT; Muraro D; Brumm AS; Niakan KK; Vallier L; Ortmann D; Rugg-Gunn PJ
    Elife; 2021 Aug; 10():. PubMed ID: 34463252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SMAD7 directly converts human embryonic stem cells to telencephalic fate by a default mechanism.
    Ozair MZ; Noggle S; Warmflash A; Krzyspiak JE; Brivanlou AH
    Stem Cells; 2013 Jan; 31(1):35-47. PubMed ID: 23034881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Caesarean scar-derived feeder cells: a novel feeder cell type for culturing human pluripotent stem cells without exogenous basic fibroblast growth factor supplementation.
    Pavarajarn W; Rungsiwiwut R; Numchaisrika P; Virutamasen P; Pruksananonda K
    Reprod Fertil Dev; 2020 Jun; 32(9):822-834. PubMed ID: 32527373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic analysis of feeder-free culture system for maintaining naïve-state pluripotency in human pluripotent stem cells.
    Isono W; Kawasaki T; Ichida JK; Nagasaka K; Hiraike O; Umezawa A; Akutsu H
    Stem Cell Investig; 2023; 10():10. PubMed ID: 37155477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organoids from human tooth showing epithelial stemness phenotype and differentiation potential.
    Hemeryck L; Hermans F; Chappell J; Kobayashi H; Lambrechts D; Lambrichts I; Bronckaers A; Vankelecom H
    Cell Mol Life Sci; 2022 Feb; 79(3):153. PubMed ID: 35217915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Expression of TGFbeta family factors and FGF2 in mouse and human embryonic stem cells maintained in different culture systems].
    Lifantseva NV; Kol'tsova AM; Polianskaia GG; Gordeeva OF
    Ontogenez; 2013; 44(1):10-23. PubMed ID: 23659078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation and Fusion of Human Cortical and Medial Ganglionic Eminence Brain Organoids.
    Xiang Y; Yoshiaki T; Patterson B; Cakir B; Kim KY; Cho YS; Park IH
    Curr Protoc Stem Cell Biol; 2018 Nov; 47(1):. PubMed ID: 30854156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Culture conditions affect cardiac differentiation potential of human pluripotent stem cells.
    Ojala M; Rajala K; Pekkanen-Mattila M; Miettinen M; Huhtala H; Aalto-Setälä K
    PLoS One; 2012; 7(10):e48659. PubMed ID: 23119085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of Various Telencephalic Regions from Human Embryonic Stem Cells in Three-Dimensional Culture.
    Kadoshima T; Sakaguchi H; Eiraku M
    Methods Mol Biol; 2017; 1597():1-16. PubMed ID: 28361306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A critical look: Challenges in differentiating human pluripotent stem cells into desired cell types and organoids.
    Fowler JL; Ang LT; Loh KM
    Wiley Interdiscip Rev Dev Biol; 2020 May; 9(3):e368. PubMed ID: 31746148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable propagation of human embryonic and induced pluripotent stem cells on decellularized human substrates.
    Abraham S; Sheridan SD; Miller B; Rao RR
    Biotechnol Prog; 2010; 26(4):1126-34. PubMed ID: 20730767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wnt-YAP interactions in the neural fate of human pluripotent stem cells and the implications for neural organoid formation.
    Bejoy J; Song L; Li Y
    Organogenesis; 2016 Jan; 12(1):1-15. PubMed ID: 26901039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Robust Pipeline for the Multi-Stage Accelerated Differentiation of Functional 3D Cortical Organoids from Human Pluripotent Stem Cells.
    Whye D; Wood D; Saber WA; Norabuena EM; Makhortova NR; Sahin M; Buttermore ED
    Curr Protoc; 2023 Jan; 3(1):e641. PubMed ID: 36633423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating Cerebral Organoids from Human Pluripotent Stem Cells.
    Chew L; Añonuevo A; Knock E
    Methods Mol Biol; 2022; 2389():177-199. PubMed ID: 34558011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Simple Method for Generating Cerebral Organoids from Human Pluripotent Stem Cells.
    Hong YJ; Lee SB; Choi J; Yoon SH; Do JT
    Int J Stem Cells; 2022 Feb; 15(1):95-103. PubMed ID: 35220295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells.
    Vallier L; Alexander M; Pedersen RA
    J Cell Sci; 2005 Oct; 118(Pt 19):4495-509. PubMed ID: 16179608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method.
    Hongisto H; Ilmarinen T; Vattulainen M; Mikhailova A; Skottman H
    Stem Cell Res Ther; 2017 Dec; 8(1):291. PubMed ID: 29284513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting signaling pathways that govern self-renewal of rabbit embryonic stem cells.
    Wang S; Shen Y; Yuan X; Chen K; Guo X; Chen Y; Niu Y; Li J; Xu RH; Yan X; Zhou Q; Ji W
    J Biol Chem; 2008 Dec; 283(51):35929-40. PubMed ID: 18940811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trans-omic profiling uncovers molecular controls of early human cerebral organoid formation.
    Chen C; Lee S; Zyner KG; Fernando M; Nemeruck V; Wong E; Marshall LL; Wark JR; Aryamanesh N; Tam PPL; Graham ME; Gonzalez-Cordero A; Yang P
    Cell Rep; 2024 May; 43(5):114219. PubMed ID: 38748874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.