BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36179857)

  • 1. Orientation and depth dependent mechanical properties of the porcine cornea: Experiments and parameter identification.
    Nambiar MH; Liechti L; Müller F; Bernau W; Studer H; Roy AS; Seiler TG; Büchler P
    Exp Eye Res; 2022 Nov; 224():109266. PubMed ID: 36179857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas.
    Bekesi N; Dorronsoro C; de la Hoz A; Marcos S
    PLoS One; 2016; 11(10):e0165669. PubMed ID: 27792759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical characterization of porcine corneas.
    Boschetti F; Triacca V; Spinelli L; Pandolfi A
    J Biomech Eng; 2012 Mar; 134(3):031003. PubMed ID: 22482683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of non-linear mechanical behavior of the cornea.
    Ashofteh Yazdi A; Melchor J; Torres J; Faris I; Callejas A; Gonzalez-Andrades M; Rus G
    Sci Rep; 2020 Jul; 10(1):11549. PubMed ID: 32665558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the ex vivo biomechanical properties of porcine cornea with inflation test for corneal xenotransplantation.
    Bao F; Jiang L; Wang X; Zhang D; Wang Q; Zeng Y
    J Med Eng Technol; 2012 Jan; 36(1):17-21. PubMed ID: 22085017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization and identification of material parameters of porcine aortic valve leaflets.
    Laville C; Pradille C; Tillier Y
    J Mech Behav Biomed Mater; 2020 Dec; 112():104036. PubMed ID: 32882679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of the geometry of the porcine cornea on the biomechanical response of inflation tests.
    Pandolfi A; Boschetti F
    Comput Methods Biomech Biomed Engin; 2015; 18(1):64-77. PubMed ID: 23521091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth-dependent mechanical properties of the human cornea by uniaxial extension.
    Nambiar MH; Seiler TG; Senti S; Liechti L; Müller F; Studer H; Roy AS; Büchler P
    Exp Eye Res; 2023 Dec; 237():109718. PubMed ID: 37952725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of biomechanical properties between human and porcine cornea.
    Zeng Y; Yang J; Huang K; Lee Z; Lee X
    J Biomech; 2001 Apr; 34(4):533-7. PubMed ID: 11266678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal and biomechanical parameters of porcine cornea.
    Kampmeier J; Radt B; Birngruber R; Brinkmann R
    Cornea; 2000 May; 19(3):355-63. PubMed ID: 10832699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical anisotropy of porcine cornea and correlation with stromal microstructure.
    Elsheikh A; Alhasso D
    Exp Eye Res; 2009 Jun; 88(6):1084-91. PubMed ID: 19450454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of UVA/Riboflavin Collagen Crosslinking on Biomechanics of Artificially Swollen Corneas.
    Hatami-Marbini H; Jayaram SM
    Invest Ophthalmol Vis Sci; 2018 Feb; 59(2):764-770. PubMed ID: 29392322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes and quantitative characterization of hyper-viscoelastic biomechanical properties for young corneal stroma after standard corneal cross-linking treatment with different ultraviolet-A energies.
    Liu T; Shen M; Li H; Zhang Y; Mu B; Zhao X; Wang Y
    Acta Biomater; 2020 Sep; 113():438-451. PubMed ID: 32525050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of corneal strip extensometry and inflation tests.
    Elsheikh A; Anderson K
    J R Soc Interface; 2005 Jun; 2(3):177-85. PubMed ID: 16849178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Bi-axial tensile tests of spinal meningeal tissues and constitutive models comparison.
    Evin M; Sudres P; Weber P; Godio-Raboutet Y; Arnoux PJ; Wagnac E; Petit Y; Tillier Y
    Acta Biomater; 2022 Mar; 140():446-456. PubMed ID: 34838701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics.
    Winkler M; Chai D; Kriling S; Nien CJ; Brown DJ; Jester B; Juhasz T; Jester JV
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):8818-27. PubMed ID: 22003117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution.
    Abass A; Hayes S; White N; Sorensen T; Meek KM
    J R Soc Interface; 2015 Mar; 12(104):20140717. PubMed ID: 25631562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermomechanical behavior of collagen-cross-linked porcine cornea.
    Spoerl E; Wollensak G; Dittert DD; Seiler T
    Ophthalmologica; 2004; 218(2):136-40. PubMed ID: 15004504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interrelation of Hydration, Collagen Cross-Linking Treatment, and Biomechanical Properties of the Cornea.
    Hatami-Marbini H; Rahimi A
    Curr Eye Res; 2016 May; 41(5):616-22. PubMed ID: 26126201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Template-based methodology for the simulation of intracorneal segment ring implantation in human corneas.
    Flecha-Lescún J; Calvo B; Zurita J; Ariza-Gracia MÁ
    Biomech Model Mechanobiol; 2018 Aug; 17(4):923-938. PubMed ID: 29564655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.