These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 36179868)
21. Alginate biopolymer as a reactor container for copper oxide-tin oxide: Efficient nanocatalyst for reduction of different pollutants. Khan SB; Akhtar K; Bakhsh EM; Kamal T; Asiri AM Chemosphere; 2022 Mar; 291(Pt 2):132811. PubMed ID: 34762883 [TBL] [Abstract][Full Text] [Related]
22. Chitosan-titanium oxide fibers supported zero-valent nanoparticles: Highly efficient and easily retrievable catalyst for the removal of organic pollutants. Ali F; Khan SB; Kamal T; Alamry KA; Asiri AM Sci Rep; 2018 Apr; 8(1):6260. PubMed ID: 29674721 [TBL] [Abstract][Full Text] [Related]
23. Production of palladium nanocatalyst supported on modified gum arabic and investigation of its potential against treatment of environmental contaminants. Baran T; Menteş A Int J Biol Macromol; 2020 Oct; 161():1559-1567. PubMed ID: 32791268 [TBL] [Abstract][Full Text] [Related]
24. Bimetallic Co/Zn zeolitic imidazolate framework ZIF-67 supported Cu nanoparticles: An excellent catalyst for reduction of synthetic dyes and nitroarenes. Budi CS; Deka JR; Hsu WC; Saikia D; Chen KT; Kao HM; Yang YC J Hazard Mater; 2021 Apr; 407():124392. PubMed ID: 33162242 [TBL] [Abstract][Full Text] [Related]
25. Synthesis and characterization of ZnS:Ni-NPs loaded on AC derived from apple tree wood and their applicability for the ultrasound assisted comparative adsorption of cationic dyes based on the experimental design. Khafri HZ; Ghaedi M; Asfaram A; Safarpoor M Ultrason Sonochem; 2017 Sep; 38():371-380. PubMed ID: 28633837 [TBL] [Abstract][Full Text] [Related]
26. Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes. Khodadadi B; Bordbar M; Nasrollahzadeh M J Colloid Interface Sci; 2017 Mar; 490():1-10. PubMed ID: 27870949 [TBL] [Abstract][Full Text] [Related]
27. Using a Nitrophenol Cocktail Screen to Improve Catalyst Down-selection. Shultz LR; Hu L; Feng X; Jurca T Chemphyschem; 2020 Aug; 21(15):1627-1631. PubMed ID: 32529796 [TBL] [Abstract][Full Text] [Related]
28. Sericin-derived activated carbon-loaded alginate bead: An effective and recyclable natural polymer-based adsorbent for methylene blue removal. Kwak HW; Hong Y; Lee ME; Jin HJ Int J Biol Macromol; 2018 Dec; 120(Pt A):906-914. PubMed ID: 30165149 [TBL] [Abstract][Full Text] [Related]
29. Composites beads based on Fe Hachemaoui M; Mokhtar A; Mekki A; Zaoui F; Abdelkrim S; Hacini S; Boukoussa B Int J Biol Macromol; 2020 Dec; 164():468-479. PubMed ID: 32682974 [TBL] [Abstract][Full Text] [Related]
30. Simultaneous ultrasound-assisted ternary adsorption of dyes onto copper-doped zinc sulfide nanoparticles loaded on activated carbon: optimization by response surface methodology. Asfaram A; Ghaedi M; Hajati S; Goudarzi A; Bazrafshan AA Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 145():203-212. PubMed ID: 25782178 [TBL] [Abstract][Full Text] [Related]
31. Copper Oxide-Antimony Oxide Entrapped Alginate Hydrogel as Efficient Catalyst for Selective Reduction of 2-Nitrophenol. Khan SB; Bakhsh EM; Akhtar K; Kamal T; Shen Y; Asiri AM Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160448 [TBL] [Abstract][Full Text] [Related]
32. Growing Pd NPs on cellulose microspheres via in-situ reduction for catalytic decolorization of methylene blue. Yu Y; Liu S; Pei Y; Luo X Int J Biol Macromol; 2021 Jan; 166():1419-1428. PubMed ID: 33161082 [TBL] [Abstract][Full Text] [Related]
33. A facile synthesis of CuAg nanoparticles on highly porous ZnO/carbon black-cellulose acetate sheets for nitroarene and azo dyes reduction/degradation. Khan SA; Khan SB; Farooq A; Asiri AM Int J Biol Macromol; 2019 Jun; 130():288-299. PubMed ID: 30797005 [TBL] [Abstract][Full Text] [Related]
35. Simple borophosphate glasses for on-demand growth of self-supported copper nanoparticles in the reduction of 4-nitrophenol. Locatelli PPP; Gurtat M; Lenz GF; Marroquin JFR; Felix JF; Schneider R; Borba CE J Hazard Mater; 2021 Aug; 416():125801. PubMed ID: 34492778 [TBL] [Abstract][Full Text] [Related]
36. In situ green synthesis of Cu nanoparticles supported on natural Natrolite zeolite for the reduction of 4-nitrophenol, congo red and methylene blue. Nasrollahzadeh M; Sajadi SM; Maham M; Dasmeh HR IET Nanobiotechnol; 2017 Aug; 11(5):538-545. PubMed ID: 28745286 [TBL] [Abstract][Full Text] [Related]
37. Catalytic reduction of 4-nitrophenol and methylene blue pollutants in water by copper and nickel nanoparticles decorated polymer sponges. Kamal T; Asiri AM; Ali N Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():120019. PubMed ID: 34126398 [TBL] [Abstract][Full Text] [Related]
38. Metal nanoparticles supported chitosan coated carboxymethyl cellulose beads as a catalyst for the selective removal of 4-nitrophenol. Maslamani N; Khan SB; Danish EY; Bakhsh EM; Akhtar K; Asiri AM Chemosphere; 2022 Mar; 291(Pt 3):133010. PubMed ID: 34813848 [TBL] [Abstract][Full Text] [Related]
39. Biogenic Synthesis of Gold Nanoparticles on a Green Support as a Reusable Catalyst for the Hydrogenation of Nitroarene and Quinoline. Adeyeye Nafiu S; Shaheen Shah S; Aziz A; Shaikh MN Chem Asian J; 2021 Jul; 16(14):1956-1966. PubMed ID: 34043274 [TBL] [Abstract][Full Text] [Related]
40. 3-D porous cellulose nanofibril aerogels with a controllable copper nanoparticle loading as a highly efficient non-noble-metal catalyst for 4-nitrophenol reduction. Oh S; Yu H; Han Y; Jeong HS; Hong HJ Chemosphere; 2022 Aug; 301():134518. PubMed ID: 35395257 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]