BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36179916)

  • 1. Modeling mucus physiology and pathophysiology in human organs-on-chips.
    Izadifar Z; Sontheimer-Phelps A; Lubamba BA; Bai H; Fadel C; Stejskalova A; Ozkan A; Dasgupta Q; Bein A; Junaid A; Gulati A; Mahajan G; Kim S; LoGrande NT; Naziripour A; Ingber DE
    Adv Drug Deliv Rev; 2022 Dec; 191():114542. PubMed ID: 36179916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Colon-on-a-Chip Enables Continuous In Vitro Analysis of Colon Mucus Layer Accumulation and Physiology.
    Sontheimer-Phelps A; Chou DB; Tovaglieri A; Ferrante TC; Duckworth T; Fadel C; Frismantas V; Sutherland AD; Jalili-Firoozinezhad S; Kasendra M; Stas E; Weaver JC; Richmond CA; Levy O; Prantil-Baun R; Breault DT; Ingber DE
    Cell Mol Gastroenterol Hepatol; 2020; 9(3):507-526. PubMed ID: 31778828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mucus production, host-microbiome interactions, hormone sensitivity, and innate immune responses modeled in human cervix chips.
    Izadifar Z; Cotton J; Chen S; Horvath V; Stejskalova A; Gulati A; LoGrande NT; Budnik B; Shahriar S; Doherty ER; Xie Y; To T; Gilpin SE; Sesay AM; Goyal G; Lebrilla CB; Ingber DE
    Nat Commun; 2024 May; 15(1):4578. PubMed ID: 38811586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Organs-on-a-Chip for Modeling Human Infectious Diseases.
    Wang Y; Wang P; Qin J
    Acc Chem Res; 2021 Sep; 54(18):3550-3562. PubMed ID: 34459199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emulation of Colonic Oxygen Gradients in a Microdevice.
    Walsh DI; Dydek EV; Lock JY; Carlson TL; Carrier RL; Kong DS; Cabrera CR; Thorsen T
    SLAS Technol; 2018 Apr; 23(2):164-171. PubMed ID: 29186668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of physiologically relevant oxygen gradients in microfluidic organ chips.
    Grant J; Lee E; Almeida M; Kim S; LoGrande N; Goyal G; Sesay AM; Breault DT; Prantil-Baun R; Ingber DE
    Lab Chip; 2022 Apr; 22(8):1584-1593. PubMed ID: 35274118
    [No Abstract]   [Full Text] [Related]  

  • 7. Combining Human Organoids and Organ-on-a-Chip Technology to Model Intestinal Region-Specific Functionality.
    Kulkarni G; Apostolou A; Ewart L; Lucchesi C; Kasendra M
    J Vis Exp; 2022 May; (183):. PubMed ID: 35604153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmentally inspired human 'organs on chips'.
    Ingber DE
    Development; 2018 May; 145(16):. PubMed ID: 29776965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organ-on-Chip Approaches for Intestinal 3D In Vitro Modeling.
    Pimenta J; Ribeiro R; Almeida R; Costa PF; da Silva MA; Pereira B
    Cell Mol Gastroenterol Hepatol; 2022; 13(2):351-367. PubMed ID: 34454168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfabrication of human organs-on-chips.
    Huh D; Kim HJ; Fraser JP; Shea DE; Khan M; Bahinski A; Hamilton GA; Ingber DE
    Nat Protoc; 2013 Nov; 8(11):2135-57. PubMed ID: 24113786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing Colon Chip Technology to Identify Commensal Bacteria That Promote Host Tolerance to Infection.
    Gazzaniga FS; Camacho DM; Wu M; Silva Palazzo MF; Dinis ALM; Grafton FN; Cartwright MJ; Super M; Kasper DL; Ingber DE
    Front Cell Infect Microbiol; 2021; 11():638014. PubMed ID: 33777849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip.
    Li XG; Chen MX; Zhao SQ; Wang XQ
    Stem Cell Rev Rep; 2022 Aug; 18(6):2137-2151. PubMed ID: 34181185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Prototyping of Multilayer Microphysiological Systems.
    Hosic S; Bindas AJ; Puzan ML; Lake W; Soucy JR; Zhou F; Koppes RA; Breault DT; Murthy SK; Koppes AN
    ACS Biomater Sci Eng; 2021 Jul; 7(7):2949-2963. PubMed ID: 34275297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organ-on-Chips for Studying Tissue Barriers: Standard Techniques and a Novel Method for Including Porous Membranes Within Microfluidic Devices.
    Ballerini M; Jouybar M; Mainardi A; Rasponi M; Ugolini GS
    Methods Mol Biol; 2022; 2373():21-38. PubMed ID: 34520004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip.
    Jalili-Firoozinezhad S; Gazzaniga FS; Calamari EL; Camacho DM; Fadel CW; Bein A; Swenor B; Nestor B; Cronce MJ; Tovaglieri A; Levy O; Gregory KE; Breault DT; Cabral JMS; Kasper DL; Novak R; Ingber DE
    Nat Biomed Eng; 2019 Jul; 3(7):520-531. PubMed ID: 31086325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What Can an Organ-on-a-Chip Teach Us About Human Lung Pathophysiology?
    Bai H; Ingber DE
    Physiology (Bethesda); 2022 Sep; 37(5):0. PubMed ID: 35658627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid plug propagation in computer-controlled microfluidic airway-on-a-chip with semi-circular microchannels.
    Viola HL; Vasani V; Washington K; Lee JH; Selva C; Li A; Llorente CJ; Murayama Y; Grotberg JB; Romanò F; Takayama S
    Lab Chip; 2024 Jan; 24(2):197-209. PubMed ID: 38093669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Healthy and Dysbiotic Vaginal Microenvironments in a Human Vagina-on-a-Chip.
    Gulati A; Jorgenson A; Junaid A; Ingber DE
    J Vis Exp; 2024 Feb; (204):. PubMed ID: 38436411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Lung Small Airway-on-a-Chip Protocol.
    Benam KH; Mazur M; Choe Y; Ferrante TC; Novak R; Ingber DE
    Methods Mol Biol; 2017; 1612():345-365. PubMed ID: 28634955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human organs-on-chips for disease modelling, drug development and personalized medicine.
    Ingber DE
    Nat Rev Genet; 2022 Aug; 23(8):467-491. PubMed ID: 35338360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.