BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36179916)

  • 21. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids.
    Kasendra M; Tovaglieri A; Sontheimer-Phelps A; Jalili-Firoozinezhad S; Bein A; Chalkiadaki A; Scholl W; Zhang C; Rickner H; Richmond CA; Li H; Breault DT; Ingber DE
    Sci Rep; 2018 Feb; 8(1):2871. PubMed ID: 29440725
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models.
    Delon LC; Guo Z; Oszmiana A; Chien CC; Gibson R; Prestidge C; Thierry B
    Biomaterials; 2019 Dec; 225():119521. PubMed ID: 31600674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the Human Body on Microfluidic Chips.
    Jalili-Firoozinezhad S; Miranda CC; Cabral JMS
    Trends Biotechnol; 2021 Aug; 39(8):838-852. PubMed ID: 33581889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic systems for modeling human development.
    Bonner MG; Gudapati H; Mou X; Musah S
    Development; 2022 Feb; 149(3):. PubMed ID: 35156682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physiologically relevant organs on chips.
    Yum K; Hong SG; Healy KE; Lee LP
    Biotechnol J; 2014 Jan; 9(1):16-27. PubMed ID: 24357624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip.
    Plebani R; Potla R; Soong M; Bai H; Izadifar Z; Jiang A; Travis RN; Belgur C; Dinis A; Cartwright MJ; Prantil-Baun R; Jolly P; Gilpin SE; Romano M; Ingber DE
    J Cyst Fibros; 2022 Jul; 21(4):606-615. PubMed ID: 34799298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology.
    Watson DE; Hunziker R; Wikswo JP
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unlocking the Potential of Organ-on-Chip Models through Pumpless and Tubeless Microfluidics.
    Delon LC; Nilghaz A; Cheah E; Prestidge C; Thierry B
    Adv Healthc Mater; 2020 Jun; 9(11):e1901784. PubMed ID: 32342669
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human organ chips for regenerative pharmacology.
    Goyal G; Belgur C; Ingber DE
    Pharmacol Res Perspect; 2024 Feb; 12(1):e01159. PubMed ID: 38149766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic Organ-on-a-Chip Models of Human Intestine.
    Bein A; Shin W; Jalili-Firoozinezhad S; Park MH; Sontheimer-Phelps A; Tovaglieri A; Chalkiadaki A; Kim HJ; Ingber DE
    Cell Mol Gastroenterol Hepatol; 2018; 5(4):659-668. PubMed ID: 29713674
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiologically Based Pharmacokinetic and Pharmacodynamic Analysis Enabled by Microfluidically Linked Organs-on-Chips.
    Prantil-Baun R; Novak R; Das D; Somayaji MR; Przekwas A; Ingber DE
    Annu Rev Pharmacol Toxicol; 2018 Jan; 58():37-64. PubMed ID: 29309256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel organ-chip system emulates three-dimensional architecture of the human epithelia and the mechanical forces acting on it.
    Varone A; Nguyen JK; Leng L; Barrile R; Sliz J; Lucchesi C; Wen N; Gravanis A; Hamilton GA; Karalis K; Hinojosa CD
    Biomaterials; 2021 Aug; 275():120957. PubMed ID: 34130145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gastrointestinal organs and organoids-on-a-chip: advances and translation into the clinics.
    Carvalho MR; Yan LP; Li B; Zhang CH; He YL; Reis RL; Oliveira JM
    Biofabrication; 2023 Sep; 15(4):. PubMed ID: 37699408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human Organs-on-Chips for Virology.
    Tang H; Abouleila Y; Si L; Ortega-Prieto AM; Mummery CL; Ingber DE; Mashaghi A
    Trends Microbiol; 2020 Nov; 28(11):934-946. PubMed ID: 32674988
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function.
    Henry OYF; Villenave R; Cronce MJ; Leineweber WD; Benz MA; Ingber DE
    Lab Chip; 2017 Jun; 17(13):2264-2271. PubMed ID: 28598479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioengineered human colon organoids with in vivo-like cellular complexity and function.
    Mitrofanova O; Nikolaev M; Xu Q; Broguiere N; Cubela I; Camp JG; Bscheider M; Lutolf MP
    Cell Stem Cell; 2024 Jun; ():. PubMed ID: 38876106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioinspired in vitro intestinal mucus model for 3D-dynamic culture of bacteria.
    Sardelli L; Vangosa FB; Merli M; Ziccarelli A; Visentin S; Visai L; Petrini P
    Biomater Adv; 2022 Aug; 139():213022. PubMed ID: 35891596
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic Organ-on-a-Chip System for Disease Modeling and Drug Development.
    Li Z; Hui J; Yang P; Mao H
    Biosensors (Basel); 2022 May; 12(6):. PubMed ID: 35735518
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinically Relevant Influenza Virus Evolution Reconstituted in a Human Lung Airway-on-a-Chip.
    Si L; Bai H; Oh CY; Jin L; Prantil-Baun R; Ingber DE
    Microbiol Spectr; 2021 Oct; 9(2):e0025721. PubMed ID: 34523991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling cancer in microfluidic human organs-on-chips.
    Sontheimer-Phelps A; Hassell BA; Ingber DE
    Nat Rev Cancer; 2019 Feb; 19(2):65-81. PubMed ID: 30647431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.