These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36180275)

  • 1. Fluid-Structure Interaction Analysis of Aerodynamic and Elasticity Forces During Vocal Fold Vibration.
    Sundström E; Oren L; Farbos de Luzan C; Gutmark E; Khosla S
    J Voice; 2022 Sep; ():. PubMed ID: 36180275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of False Vocal Folds on Intraglottal Velocity Fields.
    Oren L; Khosla S; Farbos de Luzan C; Gutmark E
    J Voice; 2021 Sep; 35(5):695-702. PubMed ID: 32147314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct simultaneous measurement of intraglottal geometry and velocity fields in excised larynges.
    Khosla S; Oren L; Ying J; Gutmark E
    Laryngoscope; 2014 Apr; 124 Suppl 2():S1-13. PubMed ID: 24510612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct measurement of planar flow rate in an excised canine larynx model.
    Oren L; Khosla S; Dembinski D; Ying J; Gutmark E
    Laryngoscope; 2015 Feb; 125(2):383-8. PubMed ID: 25093928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Medial Surface Dynamics as a Function of Subglottal Pressure in a Canine Larynx Model.
    Oren L; Khosla S; Gutmark E
    J Voice; 2021 Jan; 35(1):69-76. PubMed ID: 31387765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of the Intraglottal Pressure Induced by Flow Separation Vortices Using Large Eddy Simulation.
    Farbos de Luzan C; Oren L; Gutmark E; Khosla SM
    J Voice; 2021 Nov; 35(6):822-831. PubMed ID: 32273211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraglottal geometry and velocity measurements in canine larynges.
    Oren L; Khosla S; Gutmark E
    J Acoust Soc Am; 2014 Jan; 135(1):380-8. PubMed ID: 24437778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraglottal Pressure: A Comparison Between Male and Female Larynxes.
    Li S; Scherer RC; Wan M; Wang S; Song B
    J Voice; 2020 Nov; 34(6):813-822. PubMed ID: 31311664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational study of the effect of intraglottal vortex-induced negative pressure on vocal fold vibration.
    Farahani MH; Zhang Z
    J Acoust Soc Am; 2014 Nov; 136(5):EL369-75. PubMed ID: 25373995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraglottal velocity and pressure measurements in a hemilarynx model.
    Oren L; Gutmark E; Khosla S
    J Acoust Soc Am; 2015 Feb; 137(2):935-43. PubMed ID: 25698025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Quantification of the Intraglottal Pressure: Modal Phonation and Voice Onset.
    DeJonckere PH; Lebacq J
    J Voice; 2020 Jul; 34(4):645.e19-645.e39. PubMed ID: 30658875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow fields and acoustics in a unilateral scarred vocal fold model.
    Murugappan S; Khosla S; Casper K; Oren L; Gutmark E
    Ann Otol Rhinol Laryngol; 2009 Jan; 118(1):44-50. PubMed ID: 19244963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraglottal pressure distribution computed from empirical velocity data in canine larynx.
    Oren L; Khosla S; Gutmark E
    J Biomech; 2014 Apr; 47(6):1287-93. PubMed ID: 24636531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Modeling of Voice Production Using Excised Canine Larynx.
    Jiang W; Farbos de Luzan C; Wang X; Oren L; Khosla SM; Xue Q; Zheng X
    J Biomech Eng; 2022 Feb; 144(2):. PubMed ID: 34423809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of the Driving Force During the Normal Vocal Fold Vibration Cycle.
    DeJonckere PH; Lebacq J; Titze IR
    J Voice; 2017 Nov; 31(6):649-661. PubMed ID: 28495329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of vocal fold asymmetries on glottal flow.
    Oren L; Khosla S; Gutmark E
    Laryngoscope; 2016 Nov; 126(11):2534-2538. PubMed ID: 26972976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Ex-vivo Model Examining Acoustics and Aerodynamic Effects Following Medialization With and Without Arytenoid Adduction.
    Maddox A; Oren L; Farbos de Luzan C; Howell R; Gutmark E; Khosla S
    Laryngoscope; 2023 Mar; 133(3):621-627. PubMed ID: 35655422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effects of Negative Pressure Induced by Flow Separation Vortices on Vocal Fold Dynamics during Voice Production.
    Jiang W; Zheng X; Farbos de Luzan C; Oren L; Gutmark E; Xue Q
    Bioengineering (Basel); 2023 Oct; 10(10):. PubMed ID: 37892945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subject-Specific Computational Fluid-Structure Interaction Modeling of Rabbit Vocal Fold Vibration.
    Avhad A; Li Z; Wilson A; Sayce L; Chang S; Rousseau B; Luo H
    Fluids (Basel); 2022 Mar; 7(3):. PubMed ID: 35480340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraglottal Aerodynamics at Vocal Fold Vibration Onset.
    DeJonckere P; Lebacq J
    J Voice; 2021 Jan; 35(1):156.e23-156.e32. PubMed ID: 31481279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.