These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36180429)

  • 1. Near-infrared-laser-navigated dancing bubble within water via a thermally conductive interface.
    Hu M; Wang F; Chen L; Huo P; Li Y; Gu X; Chong KL; Deng D
    Nat Commun; 2022 Sep; 13(1):5749. PubMed ID: 36180429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces.
    Zeng B; Chong KL; Wang Y; Diddens C; Li X; Detert M; Zandvliet HJW; Lohse D
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34088844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bubble bouncing at a clean water surface.
    Zawala J; Dorbolo S; Vandewalle N; Malysa K
    Phys Chem Chem Phys; 2013 Oct; 15(40):17324-32. PubMed ID: 24022507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force Balance Model for Bubble Rise, Impact, and Bounce from Solid Surfaces.
    Manica R; Klaseboer E; Chan DY
    Langmuir; 2015 Jun; 31(24):6763-72. PubMed ID: 26035016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamics of a non-equilibrium bubble near bio-materials.
    Ohl SW; Klaseboer E; Khoo BC
    Phys Med Biol; 2009 Oct; 54(20):6313-36. PubMed ID: 19809103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Manipulation of Liquids by Thermal Marangoni Flow along the Air-Water Interfaces of a Superhydrophobic Surface.
    Gao A; Butt HJ; Steffen W; Schönecker C
    Langmuir; 2021 Jul; 37(29):8677-8686. PubMed ID: 34256567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water/gas separation based on the selective bubble-passage effect of underwater superaerophobic and superaerophilic meshes processed by a femtosecond laser.
    Yong J; Zhuang J; Bai X; Huo J; Yang Q; Hou X; Chen F
    Nanoscale; 2021 Jun; 13(23):10414-10424. PubMed ID: 34018504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable generation and manipulation of micro-bubbles in water with absorptive colloid particles by CW laser radiation.
    Angelsky OV; Bekshaev AY; Maksimyak PP; Maksimyak AP; Hanson SG; Kontush SM
    Opt Express; 2017 Mar; 25(5):5232-5243. PubMed ID: 28380787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Performance Bubble Manipulation on Ferrofluid-Infused Laser-Ablated Microstructured Surfaces.
    Zhu S; Bian Y; Wu T; Chen C; Jiao Y; Jiang Z; Huang Z; Li E; Li J; Chu J; Hu Y; Wu D; Jiang L
    Nano Lett; 2020 Jul; 20(7):5513-5521. PubMed ID: 32539420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stationary bubble formation and Marangoni convection induced by CW laser heating of a single gold nanoparticle.
    Setoura K; Ito S; Miyasaka H
    Nanoscale; 2017 Jan; 9(2):719-730. PubMed ID: 27959376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marangoni effect visualized in two-dimensions Optical tweezers for gas bubbles.
    Miniewicz A; Bartkiewicz S; Orlikowska H; Dradrach K
    Sci Rep; 2016 Oct; 6():34787. PubMed ID: 27713512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ladderlike Conical Micropillars Facilitating Underwater Gas-Bubble Manipulation in an Aqueous Environment.
    Shi D; Chen Y; Yao Y; Hou M; Chen X; Gao J; He Y; Zhang G; Wong CP
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42437-42445. PubMed ID: 32840997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism.
    Miniewicz A; Quintard C; Orlikowska H; Bartkiewicz S
    Phys Chem Chem Phys; 2017 Jul; 19(28):18695-18703. PubMed ID: 28696476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimuli-Responsive Liquid-Crystal-Infused Porous Surfaces for Manipulation of Underwater Gas Bubble Transport and Adhesion.
    Rather AM; Xu Y; Chang Y; Dupont RL; Borbora A; Kara UI; Fang JC; Mamtani R; Zhang M; Yao Y; Adera S; Bao X; Manna U; Wang X
    Adv Mater; 2022 Apr; 34(14):e2110085. PubMed ID: 35089623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonspherical laser-induced cavitation bubbles.
    Lim KY; Quinto-Su PA; Klaseboer E; Khoo BC; Venugopalan V; Ohl CD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016308. PubMed ID: 20365461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of bubble formation in spontaneous microfluidic devices: Controlling dynamic adsorption via liquid phase properties.
    Deng B; Schroën K; de Ruiter J
    J Colloid Interface Sci; 2022 Sep; 622():218-227. PubMed ID: 35504099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free-Rising Bubbles Bounce More Strongly from Mobile than from Immobile Water-Air Interfaces.
    Vakarelski IU; Yang F; Thoroddsen ST
    Langmuir; 2020 Jun; 36(21):5908-5918. PubMed ID: 32380834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Soluble Surfactants and Deformation on the Dynamics of Centered Bubbles in Cylindrical Microchannels.
    Atasi O; Haut B; Pedrono A; Scheid B; Legendre D
    Langmuir; 2018 Aug; 34(34):10048-10062. PubMed ID: 30040422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Driven Locomotion of Bubbles.
    Ito M; Mayama H; Asaumi Y; Nakamura Y; Fujii S
    Langmuir; 2020 Jun; 36(25):7021-7031. PubMed ID: 31859517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2-D steering and propelling of acoustic bubble-powered microswimmers.
    Feng J; Yuan J; Cho SK
    Lab Chip; 2016 Jun; 16(12):2317-25. PubMed ID: 27229753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.