These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36180757)

  • 1. Solar-Driven Photocatalytic Films: Synthesis Approaches, Factors Affecting Environmental Activity, and Characterization Features.
    Šuligoj A; Cerc Korošec R; Žerjav G; Novak Tušar N; Lavrenčič Štangar U
    Top Curr Chem (Cham); 2022 Oct; 380(6):51. PubMed ID: 36180757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment.
    Lu Y; Zhang H; Fan D; Chen Z; Yang X
    J Hazard Mater; 2022 Feb; 423(Pt B):127128. PubMed ID: 34534804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar energy harvesting by magnetic-semiconductor nanoheterostructure in water treatment technology.
    Mahmoodi V; Bastami TR; Ahmadpour A
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8268-8285. PubMed ID: 29372526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization Methodology and Activity Evaluation of Solar-Driven Catalysts for Environmental Remediation.
    Guli M; Helmy ET; Schneider J; Lu G; Pan JH
    Top Curr Chem (Cham); 2022 Aug; 380(5):39. PubMed ID: 35951266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unveiling the photocatalytic marvels: Recent advances in solar heterojunctions for environmental remediation and energy harvesting.
    Askari N; Jamalzadeh M; Askari A; Liu N; Samali B; Sillanpaa M; Sheppard L; Li H; Dewil R
    J Environ Sci (China); 2025 Feb; 148():283-297. PubMed ID: 39095165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites.
    Kovacic M; Salaeh S; Kusic H; Suligoj A; Kete M; Fanetti M; Stangar UL; Dionysiou DD; Bozic AL
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):17982-94. PubMed ID: 27255319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic Degradation of Pharmaceuticals Carbamazepine, Diclofenac, and Sulfamethoxazole by Semiconductor and Carbon Materials: A Review.
    Mestre AS; Carvalho AP
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31618947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glass fiber supported BiOI thin-film fixed-bed photocatalytic reactor for water decontamination under solar light irradiation.
    Zhang Y; Shan G; Dong F; Wang C; Zhu L
    J Environ Sci (China); 2019 Jun; 80():277-286. PubMed ID: 30952345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research progress in metal sulfides for photocatalysis: From activity to stability.
    Zhang S; Ou X; Xiang Q; Carabineiro SAC; Fan J; Lv K
    Chemosphere; 2022 Sep; 303(Pt 2):135085. PubMed ID: 35618060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Fe/Nb-based solar photocatalysts for water treatment: impact of different synthesis routes on materials properties.
    Ribeiro MCM; Amorim CC; Moreira RFPM; Oliveira LCA; Henriques AB; Leão MMD
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):27737-27747. PubMed ID: 29700754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Hybrid Composites for Photocatalytic Applications: A Review.
    Porcu S; Secci F; Ricci PC
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel P/Ag/Ag
    Zhu Q; Hu X; Stanislaus MS; Zhang N; Xiao R; Liu N; Yang Y
    Sci Total Environ; 2017 Jan; 577():236-244. PubMed ID: 27810300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solar Energy Catalysis.
    Sun X; Jiang S; Huang H; Li H; Jia B; Ma T
    Angew Chem Int Ed Engl; 2022 Jul; 61(29):e202204880. PubMed ID: 35471594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Outlook on bismuth-based photocatalysts for environmental applications: A specific emphasis on Z-scheme mechanisms.
    Balakumar S; Mahesh N; Kamaraj M; Shyamalagowri S; Manjunathan J; Murugesan S; Aravind J; Babu PS
    Chemosphere; 2022 Sep; 303(Pt 1):135052. PubMed ID: 35618054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective Charge Carrier Utilization in Photocatalytic Conversions.
    Zhang P; Wang T; Chang X; Gong J
    Acc Chem Res; 2016 May; 49(5):911-21. PubMed ID: 27075166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TiO
    Kovacic M; Kusic H; Fanetti M; Stangar UL; Valant M; Dionysiou DD; Bozic AL
    Environ Sci Pollut Res Int; 2017 Aug; 24(24):19965-19979. PubMed ID: 28689291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic Water Splitting-The Untamed Dream: A Review of Recent Advances.
    Jafari T; Moharreri E; Amin AS; Miao R; Song W; Suib SL
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27409596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noble-Metal-Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production.
    Yuan YJ; Lu HW; Yu ZT; Zou ZG
    ChemSusChem; 2015 Dec; 8(24):4113-27. PubMed ID: 26586523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge carrier dynamics and reaction intermediates in heterogeneous photocatalysis by time-resolved spectroscopies.
    Ma J; Miao TJ; Tang J
    Chem Soc Rev; 2022 Jul; 51(14):5777-5794. PubMed ID: 35770623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.