These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 36180796)
1. Identification of novel inhibitors of S-adenosyl-L-homocysteine hydrolase via structure-based virtual screening and molecular dynamics simulations. Chen C; Zhou XH; Cheng W; Peng YF; Yu QM; Tan XD J Mol Model; 2022 Sep; 28(10):336. PubMed ID: 36180796 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and biological evaluation of novel pentanediamide derivatives as S-adenosyl-l-homocysteine hydrolase inhibitors. Lv YB; Chen C; Yu QM; Lyu L; Peng YF; Tan XD Bioorg Med Chem Lett; 2022 Sep; 72():128880. PubMed ID: 35809817 [TBL] [Abstract][Full Text] [Related]
3. Design and synthesis of amide derivatives as S-adenosyl-L-homocysteine hydrolase inhibitors. Tan X; Wang P; Nian S; Wang G Chem Pharm Bull (Tokyo); 2014; 62(1):112-7. PubMed ID: 24162783 [TBL] [Abstract][Full Text] [Related]
4. Kailing LL; Bertinetti D; Paul CE; Manszewski T; Jaskolski M; Herberg FW; Pavlidis IV Front Microbiol; 2018; 9():505. PubMed ID: 29619018 [No Abstract] [Full Text] [Related]
5. Identification of potential inhibitors for HCV NS3 genotype 4a by combining protein-ligand interaction fingerprint, 3D pharmacophore, docking, and dynamic simulation. El-Hasab MAE; El-Bastawissy EE; El-Moselhy TF J Biomol Struct Dyn; 2018 May; 36(7):1713-1727. PubMed ID: 28531373 [TBL] [Abstract][Full Text] [Related]
6. An enzyme captured in two conformational states: crystal structure of S-adenosyl-L-homocysteine hydrolase from Bradyrhizobium elkanii. Manszewski T; Singh K; Imiolczyk B; Jaskolski M Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2422-32. PubMed ID: 26627650 [TBL] [Abstract][Full Text] [Related]
7. Multiple e-pharmacophore modelling pooled with high-throughput virtual screening, docking and molecular dynamics simulations to discover potential inhibitors of Plasmodium falciparum lactate dehydrogenase (PfLDH). Saxena S; Durgam L; Guruprasad L J Biomol Struct Dyn; 2019 Apr; 37(7):1783-1799. PubMed ID: 29718775 [TBL] [Abstract][Full Text] [Related]
8. Computational investigation of potent inhibitors against SARS-CoV-2 2'-O-methyltransferase (nsp16): Structure-based pharmacophore modeling, molecular docking, molecular dynamics simulations and binding free energy calculations. Shi L; Wen Z; Song Y; Wang J; Yu D J Mol Graph Model; 2022 Dec; 117():108306. PubMed ID: 36063745 [TBL] [Abstract][Full Text] [Related]
9. Identifying non-nucleoside inhibitors of RNA-dependent RNA-polymerase of SARS-CoV-2 through per-residue energy decomposition-based pharmacophore modeling, molecular docking, and molecular dynamics simulation. Aziz S; Waqas M; Mohanta TK; Halim SA; Iqbal A; Ali A; Khalid A; Abdalla AN; Khan A; Al-Harrasi A J Infect Public Health; 2023 Apr; 16(4):501-519. PubMed ID: 36801630 [TBL] [Abstract][Full Text] [Related]
10. Identification of novel STAT3 inhibitors for liver fibrosis, using pharmacophore-based virtual screening, molecular docking, and biomolecular dynamics simulations. Rafiq H; Hu J; Hakami MA; Hazazi A; Alamri MA; Alkhatabi HA; Mahmood A; Alotaibi BS; Wadood A; Huang X Sci Rep; 2023 Nov; 13(1):20147. PubMed ID: 37978263 [TBL] [Abstract][Full Text] [Related]
12. Targeting homologous recombination (HR) repair mechanism for cancer treatment: discovery of new potential UCHL-3 inhibitors Alakhdar AA; Saleh AH; Arafa RK J Biomol Struct Dyn; 2022 Jan; 40(1):276-289. PubMed ID: 32851933 [TBL] [Abstract][Full Text] [Related]
13. High-resolution structures of complexes of plant S-adenosyl-L-homocysteine hydrolase (Lupinus luteus). Brzezinski K; Dauter Z; Jaskolski M Acta Crystallogr D Biol Crystallogr; 2012 Mar; 68(Pt 3):218-31. PubMed ID: 22349223 [TBL] [Abstract][Full Text] [Related]
14. Pharmacoinformatics exploration of polyphenol oxidases leading to novel inhibitors by virtual screening and molecular dynamic simulation study. Hassan M; Abbas Q; Ashraf Z; Moustafa AA; Seo SY Comput Biol Chem; 2017 Jun; 68():131-142. PubMed ID: 28340400 [TBL] [Abstract][Full Text] [Related]
15. Identification of novel CDK 9 inhibitors based on virtual screening, molecular dynamics simulation, and biological evaluation. Wu M; Han J; Liu Z; Zhang Y; Huang C; Li J; Li Z Life Sci; 2020 Oct; 258():118228. PubMed ID: 32781071 [TBL] [Abstract][Full Text] [Related]
16. Identification of novel potential β-N-acetyl-D-hexosaminidase inhibitors by virtual screening, molecular dynamics simulation and MM-PBSA calculations. Liu J; Liu M; Yao Y; Wang J; Li Y; Li G; Wang Y Int J Mol Sci; 2012; 13(4):4545-4563. PubMed ID: 22605995 [TBL] [Abstract][Full Text] [Related]
17. Identification of novel PI3Kδ inhibitors by docking, ADMET prediction and molecular dynamics simulations. Liu YY; Feng XY; Jia WQ; Jing Z; Xu WR; Cheng XC Comput Biol Chem; 2019 Feb; 78():190-204. PubMed ID: 30557817 [TBL] [Abstract][Full Text] [Related]
18. Identification of potential PKC inhibitors through pharmacophore designing, 3D-QSAR and molecular dynamics simulations targeting Alzheimer's disease. Iqbal S; Anantha Krishnan D; Gunasekaran K J Biomol Struct Dyn; 2018 Nov; 36(15):4029-4044. PubMed ID: 29182053 [TBL] [Abstract][Full Text] [Related]
19. Pharmacophore modeling, multiple docking, and molecular dynamics studies on Wee1 kinase inhibitors. Hu Y; Zhou L; Zhu X; Dai D; Bao Y; Qiu Y J Biomol Struct Dyn; 2019 Jul; 37(10):2703-2715. PubMed ID: 30052133 [TBL] [Abstract][Full Text] [Related]
20. Virtual screening of small molecules databases for discovery of novel PARP-1 inhibitors: combination of in silico and in vitro studies. Ekhteiari Salmas R; Unlu A; Bektaş M; Yurtsever M; Mestanoglu M; Durdagi S J Biomol Struct Dyn; 2017 Jul; 35(9):1899-1915. PubMed ID: 27315035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]