These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36181223)

  • 1. Mid-infrared photoluminescence revealing internal quantum efficiency enhancement of type-I and type-II InAs core/shell nanowires.
    Chen X; Alradhi H; Jin ZM; Zhu L; Sanchez AM; Ma S; Zhuang Q; Shao J
    Opt Lett; 2022 Oct; 47(19):5208-5211. PubMed ID: 36181223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Band-inverted gaps in InAs/GaSb and GaSb/InAs core-shell nanowires.
    Luo N; Huang GY; Liao G; Ye LH; Xu HQ
    Sci Rep; 2016 Dec; 6():38698. PubMed ID: 27924856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polychromatic emission in a wide energy range from InP-InAs-InP multi-shell nanowires.
    Battiato S; Wu S; Zannier V; Bertoni A; Goldoni G; Li A; Xiao S; Han XD; Beltram F; Sorba L; Xu X; Rossella F
    Nanotechnology; 2019 May; 30(19):194004. PubMed ID: 30634180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ten-Fold Enhancement of InAs Nanowire Photoluminescence Emission with an InP Passivation Layer.
    Jurczak P; Zhang Y; Wu J; Sanchez AM; Aagesen M; Liu H
    Nano Lett; 2017 Jun; 17(6):3629-3633. PubMed ID: 28535064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective-Area MOCVD Growth and Carrier-Transport-Type Control of InAs(Sb)/GaSb Core-Shell Nanowires.
    Ji X; Yang X; Du W; Pan H; Yang T
    Nano Lett; 2016 Dec; 16(12):7580-7587. PubMed ID: 27960521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and performance of GaSb-based quantum cascade detectors.
    Giparakis M; Windischhofer A; Isceri S; Schrenk W; Schwarz B; Strasser G; Andrews AM
    Nanophotonics; 2024 Apr; 13(10):1773-1780. PubMed ID: 38681680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and Electrical Characterization of Hybrid Core/Shell InAs/CdSe Nanowires.
    Kaladzhian M; von den Driesch N; Demarina N; Povstugar I; Zimmermann E; Jansen MM; Bae JH; Krause C; Bennemann B; Grützmacher D; Schäpers T; Pawlis A
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):11035-11042. PubMed ID: 38377460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote p-type Doping in GaSb/InAs Core-shell Nanowires.
    Ning F; Tang LM; Zhang Y; Chen KQ
    Sci Rep; 2015 Jun; 5():10813. PubMed ID: 26028535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformal Growth of Radial InGaAs Quantum Wells in GaAs Nanowires.
    Goktas NI; Dubrovskii VG; LaPierre RR
    J Phys Chem Lett; 2021 Feb; 12(4):1275-1283. PubMed ID: 33497239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Midinfrared Photoluminescence up to 290 K Reveals Radiative Mechanisms and Substrate Doping-Type Effects of InAs Nanowires.
    Chen X; Zhuang Q; Alradhi H; Jin ZM; Zhu L; Chen X; Shao J
    Nano Lett; 2017 Mar; 17(3):1545-1551. PubMed ID: 28231002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-Resolved Magneto-Tunneling and Giant Anisotropic
    Clericò V; Wójcik P; Vezzosi A; Rocci M; Demontis V; Zannier V; Díaz-Fernández Á; Díaz E; Bellani V; Domínguez-Adame F; Diez E; Sorba L; Bertoni A; Goldoni G; Rossella F
    Nano Lett; 2024 Jan; 24(3):790-796. PubMed ID: 38189790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced luminescence properties of InAs nanowires via organic and inorganic sulfide passivation.
    Li B; Li S; Sun Y; Li S; Chen G; Wang X
    Nanotechnology; 2019 Nov; 30(44):445704. PubMed ID: 31365914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced luminescence properties of InAs-InAsP core-shell nanowires.
    Treu J; Bormann M; Schmeiduch H; Döblinger M; Morkötter S; Matich S; Wiecha P; Saller K; Mayer B; Bichler M; Amann MC; Finley JJ; Abstreiter G; Koblmüller G
    Nano Lett; 2013; 13(12):6070-7. PubMed ID: 24274597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mid-infrared photoluminescence revealing internal quantum efficiency enhancement of type-I and type-II InAs core/shell nanowires: publisher's note.
    Chen X; Alradhi H; Jin ZM; Zhu L; Sanchez AM; Ma S; Zhuang Q; Shao J
    Opt Lett; 2022 Nov; 47(21):5659. PubMed ID: 37219296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contactless Optical Characterization of Carrier Dynamics in Free-Standing InAs-InAlAs Core-Shell Nanowires on Silicon.
    Li X; Zhang K; Treu J; Stampfer L; Koblmueller G; Toor F; Prineas JP
    Nano Lett; 2019 Feb; 19(2):990-996. PubMed ID: 30620205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective-Area Growth of Vertical InGaAs/GaSb Core-Shell Nanowires on Silicon and Dual Switching Properties.
    Gamo H; Lian C; Motohisa J; Tomioka K
    ACS Nano; 2023 Sep; 17(18):18346-18351. PubMed ID: 37615535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoluminescence Characteristics of Zinc Blende InAs Nanowires.
    Anyebe EA; Kesaria M
    Sci Rep; 2019 Nov; 9(1):17665. PubMed ID: 31776377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystalline GaSb nanowires synthesized on amorphous substrates: from the formation mechanism to p-channel transistor applications.
    Yang ZX; Wang F; Han N; Lin H; Cheung HY; Fang M; Yip S; Hung T; Wong CY; Ho JC
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10946-52. PubMed ID: 24107082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Ambipolar GaSb/InAs Core-Shell Nanowires by Thermovoltage Measurements.
    Gluschke JG; Leijnse M; Ganjipour B; Dick KA; Linke H; Thelander C
    ACS Nano; 2015 Jul; 9(7):7033-40. PubMed ID: 26090774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal Phase Quantum Dots in the Ultrathin Core of GaAs-AlGaAs Core-Shell Nanowires.
    Loitsch B; Winnerl J; Grimaldi G; Wierzbowski J; Rudolph D; Morkötter S; Döblinger M; Abstreiter G; Koblmüller G; Finley JJ
    Nano Lett; 2015 Nov; 15(11):7544-51. PubMed ID: 26455732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.