These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36181422)

  • 1. A rapid and selective methionine oxidative modification strategy.
    Zhang MQ; He PY; Hu JJ; Li YM
    J Pept Sci; 2023 Mar; 29(3):e3454. PubMed ID: 36181422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A protein functionalization platform based on selective reactions at methionine residues.
    Taylor MT; Nelson JE; Suero MG; Gaunt MJ
    Nature; 2018 Oct; 562(7728):563-568. PubMed ID: 30323287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Vitamin B
    Knowles OJ; Johannissen LO; Crisenza GEM; Hay S; Leys D; Procter DJ
    Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202212158. PubMed ID: 36250805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemoselective Methionine Bioconjugation on a Polypeptide, Protein, and Proteome.
    Zang J; Chen Y; Zhu W; Lin S
    Biochemistry; 2020 Jan; 59(2):132-138. PubMed ID: 31592657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemistry-enabled residue-specific modification of peptides and proteins.
    Bandyopadhyay A; Biswas P; Kundu SK; Sarkar R
    Org Biomol Chem; 2024 Feb; 22(6):1085-1101. PubMed ID: 38231504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-Selective Functionalization of Methionine Residues via Photoredox Catalysis.
    Kim J; Li BX; Huang RY; Qiao JX; Ewing WR; MacMillan DWC
    J Am Chem Soc; 2020 Dec; 142(51):21260-21266. PubMed ID: 33290649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methionine-associated peptide α-amidation is directed both to the N- and the C-terminal amino acids.
    Sajapin J; Kulas A; Hellwig M
    J Pept Sci; 2022 Nov; 28(11):e3429. PubMed ID: 35694817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of sulfide radical cations through complexation with the peptide bond: mechanisms relevant to oxidation of proteins containing multiple methionine residues.
    Bobrowski K; Hug GL; Pogocki D; Marciniak B; Schöneich C
    J Phys Chem B; 2007 Aug; 111(32):9608-20. PubMed ID: 17658786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Modification of Thioether Groups in Peptides, Polypeptides, and Proteins.
    Deming TJ
    Bioconjug Chem; 2017 Mar; 28(3):691-700. PubMed ID: 28024390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methionine Alkylation as an Approach to Quantify Methionine Oxidation Using Mass Spectrometry.
    Hoare M; Tan R; Welle KA; Swovick K; Hryhorenko JR; Ghaemmaghami S
    J Am Soc Mass Spectrom; 2024 Mar; 35(3):433-440. PubMed ID: 38324783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of methionine into homocysteic acid in heavily oxidized proteomics samples.
    Bern M; Saladino J; Sharp JS
    Rapid Commun Mass Spectrom; 2010 Mar; 24(6):768-72. PubMed ID: 20169556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The oxidative products of methionine as site and content biomarkers for peptide oxidation.
    Zong W; Liu R; Wang M; Zhang P; Sun F; Tian Y
    J Pept Sci; 2010 Mar; 16(3):148-52. PubMed ID: 20146247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Activity-Based Oxaziridine Platform for Identifying and Developing Covalent Ligands for Functional Allosteric Methionine Sites: Redox-Dependent Inhibition of Cyclin-Dependent Kinase 4.
    Gonzalez-Valero A; Reeves AG; Page ACS; Moon PJ; Miller E; Coulonval K; Crossley SWM; Xie X; He D; Musacchio PZ; Christian AH; McKenna JM; Lewis RA; Fang E; Dovala D; Lu Y; McGregor LM; Schirle M; Tallarico JA; Roger PP; Toste FD; Chang CJ
    J Am Chem Soc; 2022 Dec; 144(50):22890-22901. PubMed ID: 36484997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic Modification of Amino Acids, Peptides, and Proteins.
    Bottecchia C; Noël T
    Chemistry; 2019 Jan; 25(1):26-42. PubMed ID: 30063101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass spectrometric identification of amino acid transformations during oxidation of peptides and proteins: modifications of methionine and tyrosine.
    Chowdhury SK; Eshraghi J; Wolfe H; Forde D; Hlavac AG; Johnston D
    Anal Chem; 1995 Jan; 67(2):390-8. PubMed ID: 7856883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Top-Down ETD-MS Provides Unreliable Quantitation of Methionine Oxidation.
    Tadi S; Sharp JS
    J Biomol Tech; 2019 Dec; 30(4):50-57. PubMed ID: 31662705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmaceutical Excipients Enhance Iron-Dependent Photo-Degradation in Pharmaceutical Buffers by near UV and Visible Light: Tyrosine Modification by Reactions of the Antioxidant Methionine in Citrate Buffer.
    Subelzu N; Schöneich C
    Pharm Res; 2021 May; 38(5):915-930. PubMed ID: 33881737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methionine oxidation by hydrogen peroxide in peptides and proteins: A theoretical and Raman spectroscopy study.
    Sjöberg B; Foley S; Cardey B; Fromm M; Enescu M
    J Photochem Photobiol B; 2018 Nov; 188():95-99. PubMed ID: 30240974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective oxidation and reduction of methionine residues in peptides and proteins by oxygen exchange between sulfoxide and sulfide.
    Shechter Y
    J Biol Chem; 1986 Jan; 261(1):66-70. PubMed ID: 3001062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method for in silico assessment of Methionine oxidation risk in monoclonal antibodies: Improvement over the 2-shell model.
    Tavella D; Ouellette DR; Garofalo R; Zhu K; Xu J; Oloo EO; Negron C; Ihnat PM
    PLoS One; 2022; 17(12):e0279689. PubMed ID: 36580468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.