These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36181535)

  • 1. Ultrafast lumbar spine MRI protocol using deep learning-based reconstruction: diagnostic equivalence to a conventional protocol.
    Fujiwara M; Kashiwagi N; Matsuo C; Watanabe H; Kassai Y; Nakamoto A; Tomiyama N
    Skeletal Radiol; 2023 Feb; 52(2):233-241. PubMed ID: 36181535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast cervcial spine MRI protocol using deep learning-based reconstruction: Diagnostic equivalence to a conventional protocol.
    Kashiwagi N; Sakai M; Tsukabe A; Yamashita Y; Fujiwara M; Yamagata K; Nakamoto A; Nakanishi K; Tomiyama N
    Eur J Radiol; 2022 Nov; 156():110531. PubMed ID: 36179465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning reconstruction for lumbar spine MRI acceleration: a prospective study.
    Tang H; Hong M; Yu L; Song Y; Cao M; Xiang L; Zhou Y; Suo S
    Eur Radiol Exp; 2024 Jun; 8(1):67. PubMed ID: 38902467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MRI of non-specific low back pain and/or lumbar radiculopathy: do we need T1 when using a sagittal T2-weighted Dixon sequence?
    Zanchi F; Richard R; Hussami M; Monier A; Knebel JF; Omoumi P
    Eur Radiol; 2020 May; 30(5):2583-2593. PubMed ID: 32020402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based reconstruction for acceleration of lumbar spine MRI: a prospective comparison with standard MRI.
    Yoo H; Yoo RE; Choi SH; Hwang I; Lee JY; Seo JY; Koh SY; Choi KS; Kang KM; Yun TJ
    Eur Radiol; 2023 Dec; 33(12):8656-8668. PubMed ID: 37498386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast high-quality MRI protocol of the lumbar spine with deep learning-based algorithm: an image quality and scanning time comparison with standard protocol.
    Zerunian M; Pucciarelli F; Caruso D; De Santis D; Polici M; Masci B; Nacci I; Del Gaudio A; Argento G; Redler A; Laghi A
    Skeletal Radiol; 2024 Jan; 53(1):151-159. PubMed ID: 37369725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic evaluation of deep learning accelerated lumbar spine MRI.
    Awan KM; Goncalves Filho ALM; Tabari A; Applewhite BP; Lang M; Lo WC; Sellers R; Kollasch P; Clifford B; Nickel D; Husseni J; Rapalino O; Schaefer P; Cauley S; Huang SY; Conklin J
    Neuroradiol J; 2024 Jun; 37(3):323-331. PubMed ID: 38195418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of image quality and interchangeability between standard and deep learning-reconstructed T2-weighted spine MRI.
    Lee S; Jung JY; Chung H; Lee HS; Nickel D; Lee J; Lee SY
    Magn Reson Imaging; 2024 Jun; 109():211-220. PubMed ID: 38513791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can T2-weighted Dixon fat-only images replace T1-weighted images in degenerative disc disease with Modic changes on lumbar spine MRI?
    Yang S; Lassalle L; Mekki A; Appert G; Rannou F; Nguyen C; Lefèvre-Colau MM; Mutschler C; Drapé JL; Feydy A
    Eur Radiol; 2021 Dec; 31(12):9380-9389. PubMed ID: 33993328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation and Feasibility of Ultrafast Cervical Spine MRI Using a Deep Learning-Assisted 3D Iterative Image Enhancement System.
    Yao H; Jia B; Pan X; Sun J
    J Multidiscip Healthc; 2024; 17():2499-2509. PubMed ID: 38799011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technology and Tool Development for BACPAC: Qualitative and Quantitative Analysis of Accelerated Lumbar Spine MRI with Deep-Learning Based Image Reconstruction at 3T.
    Han M; Bahroos E; Hess ME; Chin CT; Gao KT; Shin DD; Villanueva-Meyer JE; Link TM; Pedoia V; Majumdar S
    Pain Med; 2023 Aug; 24(Suppl 1):S149-S159. PubMed ID: 36943371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning Reconstruction for Accelerated Spine MRI: Prospective Analysis of Interchangeability.
    Almansour H; Herrmann J; Gassenmaier S; Afat S; Jacoby J; Koerzdoerfer G; Nickel D; Mostapha M; Nadar M; Othman AE
    Radiology; 2023 Mar; 306(3):e212922. PubMed ID: 36318032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interrater and intrarater agreements of magnetic resonance imaging findings in the lumbar spine: significant variability across degenerative conditions.
    Fu MC; Buerba RA; Long WD; Blizzard DJ; Lischuk AW; Haims AH; Grauer JN
    Spine J; 2014 Oct; 14(10):2442-8. PubMed ID: 24642053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-learning-reconstructed high-resolution 3D cervical spine MRI for foraminal stenosis evaluation.
    Jardon M; Tan ET; Chazen JL; Sahr M; Wen Y; Schneider B; Sneag DB
    Skeletal Radiol; 2023 Apr; 52(4):725-732. PubMed ID: 36269331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning reconstructed T2-weighted Dixon imaging of the spine: Impact on acquisition time and image quality.
    Berkarda Z; Wiedemann S; Wilpert C; Strecker R; Koerzdoerfer G; Nickel D; Bamberg F; Benndorf M; Mayrhofer T; Russe MF; Weiss J; Diallo TD
    Eur J Radiol; 2024 Sep; 178():111633. PubMed ID: 39067266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of deep learning reconstructed high-resolution 3D lumbar spine MRI.
    Sun S; Tan ET; Mintz DN; Sahr M; Endo Y; Nguyen J; Lebel RM; Carrino JA; Sneag DB
    Eur Radiol; 2022 Sep; 32(9):6167-6177. PubMed ID: 35322280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI.
    Hallinan JTPD; Zhu L; Yang K; Makmur A; Algazwi DAR; Thian YL; Lau S; Choo YS; Eide SE; Yap QV; Chan YH; Tan JH; Kumar N; Ooi BC; Yoshioka H; Quek ST
    Radiology; 2021 Jul; 300(1):130-138. PubMed ID: 33973835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic Resonance Imaging in Patients With Mechanical Low Back Pain Using a Novel Rapid-Acquisition Three-Dimensional SPACE Sequence at 1.5-T: A Pilot Study Comparing Lumbar Stenosis Assessment With Routine Two-Dimensional Magnetic Resonance Sequences.
    Swami VG; Katlariwala M; Dhillon S; Jibri Z; Jaremko JL
    Can Assoc Radiol J; 2016 Nov; 67(4):368-378. PubMed ID: 27245289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes.
    Yasaka K; Tanishima T; Ohtake Y; Tajima T; Akai H; Ohtomo K; Abe O; Kiryu S
    Eur Radiol; 2022 Sep; 32(9):6118-6125. PubMed ID: 35348861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Multislice-Based 5-Minute Lumbar Spine MRI Protocol: Initial Experience in a Clinical Setting.
    Longo MG; Fagundes J; Huang S; Mehan W; Witzel T; Bhat H; Heberlein K; Rosen BR; Rosenthal D; Gonzalez RG; Schaefer PW; Rapalino O
    J Neuroimaging; 2017 Sep; 27(5):442-446. PubMed ID: 28574665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.