These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 36181557)
1. Long-term osteogenic differentiation of human bone marrow stromal cells in simulated microgravity: novel proteins sighted. Montagna G; Pani G; Flinkman D; Cristofaro F; Pascucci B; Massimino L; Lamparelli LA; Fassina L; James P; Coffey E; Rea G; Visai L; Rizzo AM Cell Mol Life Sci; 2022 Oct; 79(10):536. PubMed ID: 36181557 [TBL] [Abstract][Full Text] [Related]
2. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis. Zhang C; Li L; Jiang Y; Wang C; Geng B; Wang Y; Chen J; Liu F; Qiu P; Zhai G; Chen P; Quan R; Wang J FASEB J; 2018 Aug; 32(8):4444-4458. PubMed ID: 29533735 [TBL] [Abstract][Full Text] [Related]
3. Impact of simulated microgravity on human bone stem cells: New hints for space medicine. Cazzaniga A; Maier JAM; Castiglioni S Biochem Biophys Res Commun; 2016 Apr; 473(1):181-186. PubMed ID: 27005819 [TBL] [Abstract][Full Text] [Related]
4. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells through down regulating the transcriptional co-activator TAZ. Chen Z; Luo Q; Lin C; Song G Biochem Biophys Res Commun; 2015 Dec 4-11; 468(1-2):21-6. PubMed ID: 26549225 [TBL] [Abstract][Full Text] [Related]
5. Maintenance of Neurogenic Differentiation Potential in Passaged Bone Marrow-Derived Human Mesenchymal Stem Cells Under Simulated Microgravity Conditions. Koaykul C; Kim MH; Kawahara Y; Yuge L; Kino-Oka M Stem Cells Dev; 2019 Dec; 28(23):1552-1561. PubMed ID: 31588849 [TBL] [Abstract][Full Text] [Related]
6. Scalable Microgravity Simulator Used for Long-Term Musculoskeletal Cells and Tissue Engineering. Cazzaniga A; Ille F; Wuest S; Haack C; Koller A; Giger-Lange C; Zocchi M; Egli M; Castiglioni S; Maier JA Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255352 [TBL] [Abstract][Full Text] [Related]
7. Effects of simulated microgravity on the expression profiles of RNA during osteogenic differentiation of human bone marrow mesenchymal stem cells. Li L; Zhang C; Chen JL; Hong FF; Chen P; Wang JF Cell Prolif; 2019 Mar; 52(2):e12539. PubMed ID: 30397970 [TBL] [Abstract][Full Text] [Related]
8. Secretory Activity of Mesenchymal Stromal Cells with Different Degree of Commitment under Conditions of Simulated Microgravity. Zhivodernikov IV; Ratushnyy AY; Buravkova LB Bull Exp Biol Med; 2021 Feb; 170(4):560-564. PubMed ID: 33725256 [TBL] [Abstract][Full Text] [Related]
10. Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells. Dai ZQ; Wang R; Ling SK; Wan YM; Li YH Cell Prolif; 2007 Oct; 40(5):671-84. PubMed ID: 17877609 [TBL] [Abstract][Full Text] [Related]
11. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Chen Z; Luo Q; Lin C; Kuang D; Song G Sci Rep; 2016 Jul; 6():30322. PubMed ID: 27444891 [TBL] [Abstract][Full Text] [Related]
12. Morphofunctional status and osteogenic differentiation potential of human mesenchymal stromal precursor cells during in vitro modeling of microgravity effects. Gershovich JG; Buravkova LB Bull Exp Biol Med; 2007 Oct; 144(4):608-13. PubMed ID: 18642723 [TBL] [Abstract][Full Text] [Related]
13. Heterotypic Cell Culture from Mouse Bone Marrow under Simulated Microgravity: Lessons for Stromal Lineage Functions. Markina E; Tyrina E; Ratushnyy A; Andreeva E; Buravkova L Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762048 [TBL] [Abstract][Full Text] [Related]
14. Simulation of Microgravity and Coculturing with Hematopoietic Cells Oppositely Modulate Wnt Signaling in Mesenchymal Stromal Cells. Ratushnyy AY; Tyrina EA; Buravkova LB Dokl Biochem Biophys; 2023 Jun; 510(1):95-98. PubMed ID: 37582870 [TBL] [Abstract][Full Text] [Related]
15. [Role of PPARγ signaling pathway in osteogenic differentiation of rat bone marrow- derived mesenchymal stem cells in simulated microgravity]. Huang Y; Yang R; Chen S; Sun J; Chen R; Huang Z Nan Fang Yi Ke Da Xue Xue Bao; 2013 Apr; 33(4):573-7. PubMed ID: 23644123 [TBL] [Abstract][Full Text] [Related]
16. Extracellular Matrix Proteins and Transcription of Matrix-Associated Genes in Mesenchymal Stromal Cells during Modeling of the Effects of Microgravity. Zhivodernikov IV; Ratushnyy AY; Matveeva DK; Buravkova LB Bull Exp Biol Med; 2020 Dec; 170(2):230-232. PubMed ID: 33263858 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of osteogenic differentiation and proliferation in human mesenchymal stem cells by a modified low intensity ultrasound stimulation under simulated microgravity. Uddin SM; Qin YX PLoS One; 2013; 8(9):e73914. PubMed ID: 24069248 [TBL] [Abstract][Full Text] [Related]
18. Recombinant Irisin Prevents the Reduction of Osteoblast Differentiation Induced by Stimulated Microgravity through Increasing β-Catenin Expression. Chen Z; Zhang Y; Zhao F; Yin C; Yang C; Wang X; Wu Z; Liang S; Li D; Lin X; Tian Y; Hu L; Li Y; Qian A Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32070052 [No Abstract] [Full Text] [Related]
19. Comprehensive circRNA expression profile and function network in osteoblast-like cells under simulated microgravity. Cao Z; Zhang Y; Wei S; Zhang X; Guo Y; Han B Gene; 2021 Jan; 764():145106. PubMed ID: 32889059 [TBL] [Abstract][Full Text] [Related]
20. Simulated Microgravity Suppresses Osteogenic Differentiation of Mesenchymal Stem Cells by Inhibiting Oxidative Phosphorylation. Liu L; Cheng Y; Wang J; Ding Z; Halim A; Luo Q; Song G Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33371243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]