These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36181678)

  • 1. Protocol to use TopNet for gene regulatory network modeling using gene expression data from perturbation experiments.
    McMurray HR; Stern HA; Ambeskovic A; Land H; McCall MN
    STAR Protoc; 2022 Dec; 3(4):101737. PubMed ID: 36181678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene network modeling via TopNet reveals functional dependencies between diverse tumor-critical mediator genes.
    McMurray HR; Ambeskovic A; Newman LA; Aldersley J; Balakrishnan V; Smith B; Stern HA; Land H; McCall MN
    Cell Rep; 2021 Dec; 37(12):110136. PubMed ID: 34936873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-based large-scale modeling of loss-of-function mutations to investigate mechanisms of stress resistance in cancer.
    Simeoni F; Loukas I; Wilson TS; Scaffidi P
    STAR Protoc; 2023 Mar; 4(1):102097. PubMed ID: 36853711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning based protocol to construct an immune-related gene network of host-pathogen interactions in plants.
    Kumar R; Acharya V
    STAR Protoc; 2023 Mar; 4(1):101934. PubMed ID: 36525344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring disease progression and gene regulatory networks from clinical transcriptomic data using PROB_R.
    Dong Z; Sun X
    STAR Protoc; 2022 Sep; 3(3):101467. PubMed ID: 35733604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A protocol for the use of cloud-based quantum computers for logical network analysis of biological systems.
    Weidner FM; Rossini M; Ankerhold J; Kestler HA
    STAR Protoc; 2023 Sep; 4(3):102438. PubMed ID: 37549034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational approach for identification of core modules from a co-expression network and GWAS data.
    Sabik OL; Ackert-Bicknell CL; Farber CR
    STAR Protoc; 2021 Sep; 2(3):100768. PubMed ID: 34467232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring the perturbed microRNA regulatory networks from gene expression data using a network propagation based method.
    Wang T; Gu J; Li Y
    BMC Bioinformatics; 2014 Jul; 15(1):255. PubMed ID: 25069957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for condition-dependent metabolite yield prediction using the TRIMER pipeline.
    Niu P; Soto MJ; Yoon BJ; Dougherty ER; Alexander FJ; Blaby I; Qian X
    STAR Protoc; 2022 Mar; 3(1):101184. PubMed ID: 35243375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ToPNet--an application for interactive analysis of expression data and biological networks.
    Hanisch D; Sohler F; Zimmer R
    Bioinformatics; 2004 Jun; 20(9):1470-1. PubMed ID: 14962941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation and improvement of the regulatory inference for large co-expression networks with limited sample size.
    Guo W; Calixto CPG; Tzioutziou N; Lin P; Waugh R; Brown JWS; Zhang R
    BMC Syst Biol; 2017 Jun; 11(1):62. PubMed ID: 28629365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational approach to generate highly conserved gene co-expression networks with RNA-seq data.
    Arshad Z; McDonald JF
    STAR Protoc; 2022 Jun; 3(2):101432. PubMed ID: 35677606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fitting Boolean networks from steady state perturbation data.
    Almudevar A; McCall MN; McMurray H; Land H
    Stat Appl Genet Mol Biol; 2011 Oct; 10(1):. PubMed ID: 23089817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Master regulator activity QTL protocol to implicate regulatory pathways potentially mediating GWAS signals using eQTL data.
    Hoskins JW; Christensen TA; Amundadottir LT
    STAR Protoc; 2023 Sep; 4(3):102362. PubMed ID: 37330907
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Wei L; Li S; Wang X
    STAR Protoc; 2022 Mar; 3(1):101205. PubMed ID: 35243382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning gene networks under SNP perturbations using eQTL datasets.
    Zhang L; Kim S
    PLoS Comput Biol; 2014 Feb; 10(2):e1003420. PubMed ID: 24586125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.
    Cai X; Bazerque JA; Giannakis GB
    PLoS Comput Biol; 2013; 9(5):e1003068. PubMed ID: 23717196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating transcriptional regulatory networks from time-ordered stem cell differentiation RNA sequencing data.
    Tsai YS; Chang YM; Lim YM; Cheong SK; Chung IF; Wong CY
    STAR Protoc; 2022 Sep; 3(3):101541. PubMed ID: 36042881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data.
    Aschenbrenner AC; Bonaguro L
    STAR Protoc; 2023 Mar; 4(2):102193. PubMed ID: 36964906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mean-field approach for modeling the propagation of perturbations in biochemical reaction networks.
    Przedborski M; Sharon D; Chan S; Kohandel M
    Eur J Pharm Sci; 2021 Oct; 165():105919. PubMed ID: 34175448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.