BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36181793)

  • 1. Glycosyltransferases EXTL2 and EXTL3 cellular balance dictates heparan sulfate biosynthesis and shapes gastric cancer cell motility and invasion.
    Marques C; Poças J; Gomes C; Faria-Ramos I; Reis CA; Vivès RR; Magalhães A
    J Biol Chem; 2022 Nov; 298(11):102546. PubMed ID: 36181793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced Expression of EXTL2, a Member of the Exostosin (EXT) Family of Glycosyltransferases, in Human Embryonic Kidney 293 Cells Results in Longer Heparan Sulfate Chains.
    Katta K; Imran T; Busse-Wicher M; Grønning M; Czajkowski S; Kusche-Gullberg M
    J Biol Chem; 2015 May; 290(21):13168-77. PubMed ID: 25829497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exostosin-like 2 regulates FGF2 signaling by controlling the endocytosis of FGF2.
    Nadanaka S; Kitagawa H
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):791-799. PubMed ID: 29305908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific functions of
    Yamada S
    Cell Mol Biol Lett; 2020; 25():39. PubMed ID: 32843889
    [No Abstract]   [Full Text] [Related]  

  • 5. The exostosin family of glycosyltransferases: mRNA expression profiles and heparan sulphate structure in human breast carcinoma cell lines.
    Sembajwe LF; Katta K; Grønning M; Kusche-Gullberg M
    Biosci Rep; 2018 Aug; 38(4):. PubMed ID: 30054430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation.
    Busse M; Feta A; Presto J; Wilén M; Grønning M; Kjellén L; Kusche-Gullberg M
    J Biol Chem; 2007 Nov; 282(45):32802-10. PubMed ID: 17761672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode alpha 1,4- N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/ heparin biosynthesis.
    Kim BT; Kitagawa H; Tamura J; Saito T; Kusche-Gullberg M; Lindahl U; Sugahara K
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7176-81. PubMed ID: 11390981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of heparan sulfate in EXT1-deficient cells.
    Okada M; Nadanaka S; Shoji N; Tamura J; Kitagawa H
    Biochem J; 2010 May; 428(3):463-71. PubMed ID: 20377530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene silencing of EXTL2 and EXTL3 as a substrate deprivation therapy for heparan sulphate storing mucopolysaccharidoses.
    Kaidonis X; Liaw WC; Roberts AD; Ly M; Anson D; Byers S
    Eur J Hum Genet; 2010 Feb; 18(2):194-9. PubMed ID: 19690583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EXTL2 controls liver regeneration and aortic calcification through xylose kinase-dependent regulation of glycosaminoglycan biosynthesis.
    Nadanaka S; Kitagawa H
    Matrix Biol; 2014 Apr; 35():18-24. PubMed ID: 24176719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemo-enzymatic synthesis of tetrasaccharide linker peptides to study the divergent step in glycosaminoglycan biosynthesis.
    Bourgeais M; Fouladkar F; Weber M; Boeri-Erba E; Wild R
    Glycobiology; 2024 Apr; 34(5):. PubMed ID: 38401165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial roles of heparan sulfate proteoglycans and heparan sulfates in Caenorhabditis elegans neural development.
    Kinnunen TK
    PLoS One; 2014; 9(7):e102919. PubMed ID: 25054285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heparan Sulfate Biosynthesis and Sulfation Profiles as Modulators of Cancer Signalling and Progression.
    Marques C; Reis CA; Vivès RR; Magalhães A
    Front Oncol; 2021; 11():778752. PubMed ID: 34858858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute UV irradiation increases heparan sulfate proteoglycan levels in human skin.
    Jung JY; Oh JH; Kim YK; Shin MH; Lee D; Chung JH
    J Korean Med Sci; 2012 Mar; 27(3):300-6. PubMed ID: 22379342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis.
    Holmborn K; Habicher J; Kasza Z; Eriksson AS; Filipek-Gorniok B; Gopal S; Couchman JR; Ahlberg PE; Wiweger M; Spillmann D; Kreuger J; Ledin J
    J Biol Chem; 2012 Sep; 287(40):33905-16. PubMed ID: 22869369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Requirements for Heparan Sulfate Biosynthesis in Morphogenesis and Nervous System Development in C. elegans.
    Blanchette CR; Thackeray A; Perrat PN; Hekimi S; Bénard CY
    PLoS Genet; 2017 Jan; 13(1):e1006525. PubMed ID: 28068429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heparan sulfate proteoglycans in cancer: Pathogenesis and therapeutic potential.
    Yang H; Wang L
    Adv Cancer Res; 2023; 157():251-291. PubMed ID: 36725112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heparan Sulfate in the Tumor Microenvironment.
    Bartolini B; Caravà E; Caon I; Parnigoni A; Moretto P; Passi A; Vigetti D; Viola M; Karousou E
    Adv Exp Med Biol; 2020; 1245():147-161. PubMed ID: 32266657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heparan Sulfate and Heparan Sulfate Proteoglycans in Cancer Initiation and Progression.
    Nagarajan A; Malvi P; Wajapeyee N
    Front Endocrinol (Lausanne); 2018; 9():483. PubMed ID: 30197623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EXTL2, a member of the EXT family of tumor suppressors, controls glycosaminoglycan biosynthesis in a xylose kinase-dependent manner.
    Nadanaka S; Zhou S; Kagiyama S; Shoji N; Sugahara K; Sugihara K; Asano M; Kitagawa H
    J Biol Chem; 2013 Mar; 288(13):9321-33. PubMed ID: 23395820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.