These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 36181803)
1. Mitigating environmental impacts using net energy system in feed formulation in China's pig production. Hu Q; Shi H; Wang L; Wang L; Hou Y; Wang H; Lai C; Zhang S Sci Total Environ; 2023 Jan; 856(Pt 1):159103. PubMed ID: 36181803 [TBL] [Abstract][Full Text] [Related]
2. Mitigation of Multiple Environmental Footprints for China's Pig Production Using Different Land Use Strategies. Long W; Wang H; Hou Y; Chadwick D; Ma Y; Cui Z; Zhang F Environ Sci Technol; 2021 Apr; 55(8):4440-4451. PubMed ID: 33793238 [TBL] [Abstract][Full Text] [Related]
3. Precision feeding as a tool to reduce the environmental footprint of pig production systems: a life-cycle assessment. Llorens B; Pomar C; Goyette B; Rajagopal R; Andretta I; Latorre MA; Remus A J Anim Sci; 2024 Jan; 102():. PubMed ID: 39115251 [TBL] [Abstract][Full Text] [Related]
4. Impact of nitrate and 3-nitrooxypropanol on the carbon footprints of milk from cattle produced in confined-feeding systems across regions in the United States: A life cycle analysis. Uddin ME; Tricarico JM; Kebreab E J Dairy Sci; 2022 Jun; 105(6):5074-5083. PubMed ID: 35346477 [TBL] [Abstract][Full Text] [Related]
5. Mitigation potential for carbon and nitrogen emissions in pig production systems: lessons from the North China Plain. Wang H; Zhang X; Ma Y; Hou Y Sci Total Environ; 2020 Jul; 725():138482. PubMed ID: 32304969 [TBL] [Abstract][Full Text] [Related]
6. Carbon footprint of South Dakota dairy production system and assessment of mitigation options. Naranjo AM; Sieverding H; Clay D; Kebreab E PLoS One; 2023; 18(3):e0269076. PubMed ID: 36996025 [TBL] [Abstract][Full Text] [Related]
7. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley. Battini F; Agostini A; Boulamanti AK; Giuntoli J; Amaducci S Sci Total Environ; 2014 May; 481():196-208. PubMed ID: 24598150 [TBL] [Abstract][Full Text] [Related]
8. Greenhouse gas emissions and mitigation potential of hybrid maize seed production in northwestern China. Liu D; Zhang W; Wang X; Guo Y; Chen X Environ Sci Pollut Res Int; 2022 Mar; 29(12):17787-17798. PubMed ID: 34671908 [TBL] [Abstract][Full Text] [Related]
9. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems. Aguirre-Villegas HA; Passos-Fonseca TH; Reinemann DJ; Armentano LE; Wattiaux MA; Cabrera VE; Norman JM; Larson R J Dairy Sci; 2015 Mar; 98(3):1571-92. PubMed ID: 25597974 [TBL] [Abstract][Full Text] [Related]
10. Exploring the environmental impact of crop production in China using a comprehensive footprint approach. Li Y; Wu W; Yang J; Cheng K; Smith P; Sun J; Xu X; Yue Q; Pan G Sci Total Environ; 2022 Jun; 824():153898. PubMed ID: 35182617 [TBL] [Abstract][Full Text] [Related]
11. Farm and product carbon footprints of China's fruit production--life cycle inventory of representative orchards of five major fruits. Yan M; Cheng K; Yue Q; Yan Y; Rees RM; Pan G Environ Sci Pollut Res Int; 2016 Mar; 23(5):4681-91. PubMed ID: 26527344 [TBL] [Abstract][Full Text] [Related]
12. Life cycle assessment of alternative swine management practices. Bandekar PA; Leh M; Bautista R; Matlock MD; Thoma G; Ulrich R J Anim Sci; 2019 Jan; 97(1):472-484. PubMed ID: 30395291 [TBL] [Abstract][Full Text] [Related]
13. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Xia L; Ti C; Li B; Xia Y; Yan X Sci Total Environ; 2016 Jun; 556():116-25. PubMed ID: 26971213 [TBL] [Abstract][Full Text] [Related]
14. Greenhouse gas emissions and carbon footprint of maize-based feed products for animal farming in Thailand. Moungsree S; Neamhom T; Polprasert S; Suwannahong K; Polprasert C; Patthanaissaranukool W Environ Sci Pollut Res Int; 2024 Jan; 31(2):2657-2670. PubMed ID: 38066284 [TBL] [Abstract][Full Text] [Related]
15. Can farmers mitigate environmental impacts through combined production of food, fuel and feed? A consequential life cycle assessment of integrated mixed crop-livestock system with a green biorefinery. Parajuli R; Dalgaard T; Birkved M Sci Total Environ; 2018 Apr; 619-620():127-143. PubMed ID: 29145050 [TBL] [Abstract][Full Text] [Related]
16. Carbon footprint and ammonia emissions of California beef production systems. Stackhouse-Lawson KR; Rotz CA; Oltjen JW; Mitloehner FM J Anim Sci; 2012 Dec; 90(12):4641-55. PubMed ID: 22952361 [TBL] [Abstract][Full Text] [Related]
17. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Zhang WF; Dou ZX; He P; Ju XT; Powlson D; Chadwick D; Norse D; Lu YL; Zhang Y; Wu L; Chen XP; Cassman KG; Zhang FS Proc Natl Acad Sci U S A; 2013 May; 110(21):8375-80. PubMed ID: 23671096 [TBL] [Abstract][Full Text] [Related]
18. The nitrogen and carbon footprints of ammonia synthesis in China based on life cycle assessment. Li Y; Zhang Z; Wang Q; Long X; Cao Y; Yang H; Yang Q J Environ Manage; 2023 Nov; 345():118848. PubMed ID: 37660421 [TBL] [Abstract][Full Text] [Related]
19. Agricultural transformation towards delivering deep carbon cuts in China's arid inland areas. Zou M; Deng Y; Du T; Kang S Environ Int; 2023 Oct; 180():108245. PubMed ID: 37806156 [TBL] [Abstract][Full Text] [Related]
20. Lower pork consumption and technological change in feed production can reduce the pork supply chain environmental footprint in China. Tong B; Zhang L; Hou Y; Oenema O; Long W; Velthof G; Ma W; Zhang F Nat Food; 2023 Jan; 4(1):74-83. PubMed ID: 37118572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]