BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36181811)

  • 1. Tailoring a highly conductive and super-hydrophilic electrode for biocatalytic performance of microbial electrolysis cells.
    Park SG; Rhee C; Jadhav DA; Eisa T; Al-Mayyahi RB; Shin SG; Abdelkareem MA; Chae KJ
    Sci Total Environ; 2023 Jan; 856(Pt 1):159105. PubMed ID: 36181811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial electrolysis cells for the production of biohydrogen in dark fermentation - A review.
    Lee HS; Xin W; Katakojwala R; Venkata Mohan S; Tabish NMD
    Bioresour Technol; 2022 Nov; 363():127934. PubMed ID: 36100184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen production profiles using furans in microbial electrolysis cells.
    Catal T; Gover T; Yaman B; Droguetti J; Yilancioglu K
    World J Microbiol Biotechnol; 2017 Jun; 33(6):115. PubMed ID: 28488198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing bioelectrochemical hydrogen production from industrial wastewater using Ni-foam cathodes in a microbial electrolysis cell pilot plant.
    Guerrero-Sodric O; Baeza JA; Guisasola A
    Water Res; 2024 Jun; 256():121616. PubMed ID: 38657305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent.
    Li X; Zhang R; Qian Y; Angelidaki I; Zhang Y
    Bioresour Technol; 2017 Jul; 236():37-43. PubMed ID: 28390275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane.
    Call D; Logan BE
    Environ Sci Technol; 2008 May; 42(9):3401-6. PubMed ID: 18522125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the electrode size and arrangement in a microbial electrolysis cell.
    Gil-Carrera L; Mehta P; Escapa A; Morán A; García V; Guiot SR; Tartakovsky B
    Bioresour Technol; 2011 Oct; 102(20):9593-8. PubMed ID: 21875792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaugmentation of microbial electrolysis cells with Geobacter sulfurreducens YM18 for enhanced hydrogen production from starch.
    Ochiai I; Harada T; Jomori S; Kouzuma A; Watanabe K
    Bioresour Technol; 2023 Oct; 386():129508. PubMed ID: 37468016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Onset Investigation on Dynamic Change of Biohythane Generation and Microbial Structure in Dual-chamber versus Single-chamber Microbial Electrolysis Cells.
    Luo S; Liu F; Fu B; He K; Yang H; Zhang X; Liang P; Huang X
    Water Res; 2021 Aug; 201():117326. PubMed ID: 34147740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of gas atmosphere on hydrogen production in microbial electrolysis cells.
    Cui H; Yang Y; Wang J; Lou Y; Fang A; Liu B; Xie G; Xing D
    Sci Total Environ; 2021 Feb; 756():144154. PubMed ID: 33310211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ammonia on electrochemical active biofilm in microbial electrolysis cells for synthetic swine wastewater treatment.
    Wang N; Feng Y; Li Y; Zhang L; Liu J; Li N; He W
    Water Res; 2022 Jul; 219():118570. PubMed ID: 35597221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vapor-Fed Cathode Microbial Electrolysis Cells with Closely Spaced Electrodes Enables Greatly Improved Performance.
    Rossi R; Baek G; Logan BE
    Environ Sci Technol; 2022 Jan; 56(2):1211-1220. PubMed ID: 34971515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization.
    Liang DW; Peng SK; Lu SF; Liu YY; Lan F; Xiang Y
    Bioresour Technol; 2011 Dec; 102(23):10881-5. PubMed ID: 21974881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relating MEC population dynamics to anode performance from DGGE and electrical data.
    Croese E; Keesman KJ; Widjaja-Greefkes AH; Geelhoed JS; Plugge CM; Sleutels TH; Stams AJ; Euverink GJ
    Syst Appl Microbiol; 2013 Sep; 36(6):408-16. PubMed ID: 23830069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies.
    Yang E; Omar Mohamed H; Park SG; Obaid M; Al-Qaradawi SY; Castaño P; Chon K; Chae KJ
    Bioresour Technol; 2021 Jan; 320(Pt B):124363. PubMed ID: 33186801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved hydrogen gas production in microbial electrolysis cells using inexpensive recycled carbon fibre fabrics.
    Carlotta-Jones DI; Purdy K; Kirwan K; Stratford J; Coles SR
    Bioresour Technol; 2020 May; 304():122983. PubMed ID: 32086038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of recent advances in electrode materials for emerging bioelectrochemical systems: From biofilm-bearing anodes to specialized cathodes.
    Mier AA; Olvera-Vargas H; Mejía-López M; Longoria A; Verea L; Sebastian PJ; Arias DM
    Chemosphere; 2021 Nov; 283():131138. PubMed ID: 34146871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen Production in Microbial Electrolysis Cells Based on Bacterial Anodes Encapsulated in a Small Bioreactor Platform.
    Amar Dubrovin I; Ouaknin Hirsch L; Rozenfeld S; Gandu B; Menashe O; Schechter A; Cahan R
    Microorganisms; 2022 May; 10(5):. PubMed ID: 35630450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells.
    Liu Q; Ren ZJ; Huang C; Liu B; Ren N; Xing D
    Biotechnol Biofuels; 2016; 9():162. PubMed ID: 27489567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen production from lignocellulosic hydrolysate in an up-scaled microbial electrolysis cell with stacked bio-electrodes.
    Wang L; Long F; Liang D; Xiao X; Liu H
    Bioresour Technol; 2021 Jan; 320(Pt A):124314. PubMed ID: 33147527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.