These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36182057)

  • 1. Dynamic remodeling of fiber networks with stiff inclusions under compressive loading.
    Carroll B; Thanh MH; Patteson AE
    Acta Biomater; 2023 Jun; 163():106-116. PubMed ID: 36182057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells.
    van Oosten ASG; Chen X; Chin L; Cruz K; Patteson AE; Pogoda K; Shenoy VB; Janmey PA
    Nature; 2019 Sep; 573(7772):96-101. PubMed ID: 31462779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compression stiffening of fibrous networks with stiff inclusions.
    Shivers JL; Feng J; van Oosten ASG; Levine H; Janmey PA; MacKintosh FC
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21037-21044. PubMed ID: 32817547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of nascent cohesive fiber-fiber interactions to the non-linear elasticity of fibrin networks under tensile load.
    Britton S; Kim O; Pancaldi F; Xu Z; Litvinov RI; Weisel JW; Alber M
    Acta Biomater; 2019 Aug; 94():514-523. PubMed ID: 31152942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loops versus lines and the compression stiffening of cells.
    Gandikota MC; Pogoda K; van Oosten A; Engstrom TA; Patteson AE; Janmey PA; Schwarz JM
    Soft Matter; 2020 May; 16(18):4389-4406. PubMed ID: 32249282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the nonlinear mechanics of fibrin networks under compression.
    Kim OV; Litvinov RI; Weisel JW; Alber MS
    Biomaterials; 2014 Aug; 35(25):6739-49. PubMed ID: 24840618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-tensile rheology of fibrous gels quantifies strain-dependent anisotropy.
    Goren S; Ergaz B; Barak D; Sorkin R; Lesman A
    Acta Biomater; 2024 Jun; 181():272-281. PubMed ID: 38685460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compression-induced structural and mechanical changes of fibrin-collagen composites.
    Kim OV; Litvinov RI; Chen J; Chen DZ; Weisel JW; Alber MS
    Matrix Biol; 2017 Jul; 60-61():141-156. PubMed ID: 27751946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales.
    Kurniawan NA; Vos BE; Biebricher A; Wuite GJ; Peterman EJ; Koenderink GH
    Biophys J; 2016 Sep; 111(5):1026-34. PubMed ID: 27602730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cells actively stiffen fibrin networks by generating contractile stress.
    Jansen KA; Bacabac RG; Piechocka IK; Koenderink GH
    Biophys J; 2013 Nov; 105(10):2240-51. PubMed ID: 24268136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrin mechanical properties and their structural origins.
    Litvinov RI; Weisel JW
    Matrix Biol; 2017 Jul; 60-61():110-123. PubMed ID: 27553509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing the molecular origins of fibrin's elastomeric properties by in situ X-ray scattering.
    Vos BE; Martinez-Torres C; Burla F; Weisel JW; Koenderink GH
    Acta Biomater; 2020 Mar; 104():39-52. PubMed ID: 31923718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood clot behaves as a poro-visco-elastic material.
    Ghezelbash F; Liu S; Shirazi-Adl A; Li J
    J Mech Behav Biomed Mater; 2022 Apr; 128():105101. PubMed ID: 35124354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale mechanical characterization and computational modeling of fibrin gels.
    Jimenez JM; Tuttle T; Guo Y; Miles D; Buganza-Tepole A; Calve S
    Acta Biomater; 2023 May; 162():292-303. PubMed ID: 36965611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unexpected softening of a fibrous matrix by contracting inclusions.
    Sarkar M; Burkel BM; Ponik SM; Notbohm J
    Acta Biomater; 2024 Mar; 177():253-264. PubMed ID: 38272198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poroelasticity of (bio)polymer networks during compression: theory and experiment.
    Punter MTJJM; Vos BE; Mulder BM; Koenderink GH
    Soft Matter; 2020 Feb; 16(5):1298-1305. PubMed ID: 31922166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stiffening of individual fibrin fibers equitably distributes strain and strengthens networks.
    Hudson NE; Houser JR; O'Brien ET; Taylor RM; Superfine R; Lord ST; Falvo MR
    Biophys J; 2010 Apr; 98(8):1632-40. PubMed ID: 20409484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional anisotropic hyperelastic constitutive model describing the mechanical response of human and mouse cervix.
    Shi L; Hu L; Lee N; Fang S; Myers K
    Acta Biomater; 2022 Sep; 150():277-294. PubMed ID: 35931278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics of a two-fiber model with one nested fiber network, as applied to the collagen-fibrin system.
    Nedrelow DS; Bankwala D; Hyypio JD; Lai VK; Barocas VH
    Acta Biomater; 2018 May; 72():306-315. PubMed ID: 29631049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive instabilities enable cell-induced extreme densification patterns in the fibrous extracellular matrix: Discrete model predictions.
    Kalaitzidou C; Grekas G; Zilian A; Makridakis C; Rosakis P
    PLoS Comput Biol; 2024 Jul; 20(7):e1012238. PubMed ID: 38950077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.