These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 36182163)
1. Atmospheric oxidizing capacity in autumn Beijing: Analysis of the O Jia C; Tong S; Zhang X; Li F; Zhang W; Li W; Wang Z; Zhang G; Tang G; Liu Z; Ge M J Environ Sci (China); 2023 Feb; 124():557-569. PubMed ID: 36182163 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis for the impacts of VOC subgroups and atmospheric oxidation capacity on O Wang R; Wang L; Yang Y; Zhan J; Ji D; Hu B; Ling Z; Xue M; Zhao S; Yao D; Liu Y; Wang Y Environ Res; 2024 May; 248():118250. PubMed ID: 38244964 [TBL] [Abstract][Full Text] [Related]
3. Increasing atmospheric oxidizing capacity weakens emission mitigation effort in Beijing during autumn haze events. Feng T; Zhao S; Bei N; Liu S; Li G Chemosphere; 2021 Oct; 281():130855. PubMed ID: 34289598 [TBL] [Abstract][Full Text] [Related]
4. PM Qin M; Hu A; Mao J; Li X; Sheng L; Sun J; Li J; Wang X; Zhang Y; Hu J Sci Total Environ; 2022 Mar; 810():152268. PubMed ID: 34902404 [TBL] [Abstract][Full Text] [Related]
5. Formation mechanisms and atmospheric implications of summertime nitrous acid (HONO) during clean, ozone pollution and double high-level PM Xuan H; Zhao Y; Ma Q; Chen T; Liu J; Wang Y; Liu C; Wang Y; Liu Y; Mu Y; He H Sci Total Environ; 2023 Jan; 857(Pt 3):159538. PubMed ID: 36270355 [TBL] [Abstract][Full Text] [Related]
6. Progress in quantitative research on the relationship between atmospheric oxidation and air quality. Wang Y; Jin X; Liu Z; Wang G; Tang G; Lu K; Hu B; Wang S; Li G; An X; Wang C; Hu Q; He L; Zhang F; Zhang Y J Environ Sci (China); 2023 Jan; 123():350-366. PubMed ID: 36521998 [TBL] [Abstract][Full Text] [Related]
7. Characteristics, sources of volatile organic compounds, and their contributions to secondary air pollution during different periods in Beijing, China. Liang S; Gao S; Wang S; Chai W; Chen W; Tang G Sci Total Environ; 2023 Feb; 858(Pt 2):159831. PubMed ID: 36336049 [TBL] [Abstract][Full Text] [Related]
8. Pollution characteristics, sources, and photochemical roles of ambient carbonyl compounds in summer of Beijing, China. Chai W; Wang M; Li J; Tang G; Zhang G; Chen W Environ Pollut; 2023 Nov; 336():122403. PubMed ID: 37595733 [TBL] [Abstract][Full Text] [Related]
9. Significant decreases in the volatile organic compound concentration, atmospheric oxidation capacity and photochemical reactivity during the National Day holiday over a suburban site in the North China Plain. Yang Y; Wang Y; Yao D; Zhao S; Yang S; Ji D; Sun J; Wang Y; Liu Z; Hu B; Zhang R; Wang Y Environ Pollut; 2020 Aug; 263(Pt A):114657. PubMed ID: 33618483 [TBL] [Abstract][Full Text] [Related]
10. Atmospheric oxidation capacity and O Chen G; Liu T; Chen J; Xu L; Hu B; Yang C; Fan X; Li M; Hong Y; Ji X; Chen J; Zhang F J Environ Sci (China); 2024 Feb; 136():68-80. PubMed ID: 37923476 [TBL] [Abstract][Full Text] [Related]
11. Ozone and SOA formation potential based on photochemical loss of VOCs during the Beijing summer. Zhan J; Feng Z; Liu P; He X; He Z; Chen T; Wang Y; He H; Mu Y; Liu Y Environ Pollut; 2021 Sep; 285():117444. PubMed ID: 34090068 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of peroxyacetyl nitrate pollution during a 2015 winter haze episode in Beijing. Zhang B; Zhao X; Zhang J Environ Pollut; 2019 Jan; 244():379-387. PubMed ID: 30352352 [TBL] [Abstract][Full Text] [Related]
13. The role of NO Zhan J; Zheng F; Xie R; Liu J; Chu B; Ma J; Xie D; Meng X; Huang Q; He H; Liu Y J Environ Manage; 2023 Nov; 345():118645. PubMed ID: 37499414 [TBL] [Abstract][Full Text] [Related]
14. Multiple Impacts of Aerosols on O Tan Z; Lu K; Ma X; Chen S; He L; Huang X; Li X; Lin X; Tang M; Yu D; Wahner A; Zhang Y Environ Sci Technol; 2022 Dec; 56(24):17569-17580. PubMed ID: 36473087 [TBL] [Abstract][Full Text] [Related]
15. Identification of the major HO Mendez M; Amedro D; Blond N; Hauglustaine DA; Blondeau P; Afif C; Fittschen C; Schoemaecker C Indoor Air; 2017 Mar; 27(2):434-442. PubMed ID: 27317507 [TBL] [Abstract][Full Text] [Related]
16. Heterogeneous HONO formation deteriorates the wintertime particulate pollution in the Guanzhong Basin, China. Li X; Bei N; Wu J; Wang R; Liu S; Liu L; Jiang Q; Tie X; Molina LT; Li G Environ Pollut; 2022 Jun; 303():119157. PubMed ID: 35304175 [TBL] [Abstract][Full Text] [Related]
17. Atmospheric fate of peroxyacetyl nitrate in suburban Hong Kong and its impact on local ozone pollution. Zeng L; Fan GJ; Lyu X; Guo H; Wang JL; Yao D Environ Pollut; 2019 Sep; 252(Pt B):1910-1919. PubMed ID: 31227349 [TBL] [Abstract][Full Text] [Related]
18. Direct evidence of local photochemical production driven ozone episode in Beijing: A case study. Tan Z; Ma X; Lu K; Jiang M; Zou Q; Wang H; Zeng L; Zhang Y Sci Total Environ; 2021 Dec; 800():148868. PubMed ID: 34384967 [TBL] [Abstract][Full Text] [Related]
19. Smog Chamber Study on the Role of NO Chen T; Zhang P; Ma Q; Chu B; Liu J; Ge Y; He H Environ Sci Technol; 2022 Oct; 56(19):13654-13663. PubMed ID: 36136046 [TBL] [Abstract][Full Text] [Related]
20. MAX-DOAS and in-situ measurements of aerosols and trace gases over Dongying, China: Insight into ozone formation sensitivity based on secondary HCHO. Zheng X; Javed Z; Liu C; Tanvir A; Sandhu O; Liu H; Ji X; Xing C; Lin H; Du D J Environ Sci (China); 2024 Jan; 135():656-668. PubMed ID: 37778836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]