BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 36182279)

  • 1. Strategic perceptual weighting of acoustic cues for word stress in listeners with cochlear implants, acoustic hearing, or simulated bimodal hearing.
    Fleming JT; Winn MB
    J Acoust Soc Am; 2022 Sep; 152(3):1300. PubMed ID: 36182279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discriminability and Perceptual Saliency of Temporal and Spectral Cues for Final Fricative Consonant Voicing in Simulated Cochlear-Implant and Bimodal Hearing.
    Kong YY; Winn MB; Poellmann K; Donaldson GS
    Trends Hear; 2016 Jun; 20():. PubMed ID: 27317666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic cue integration in speech intonation recognition with cochlear implants.
    Peng SC; Chatterjee M; Lu N
    Trends Amplif; 2012 Jun; 16(2):67-82. PubMed ID: 22790392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Timbre and speech perception in bimodal and bilateral cochlear-implant listeners.
    Kong YY; Mullangi A; Marozeau J
    Ear Hear; 2012; 33(5):645-59. PubMed ID: 22677814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy and cue use in word segmentation for cochlear-implant listeners and normal-hearing listeners presented vocoded speech.
    Heffner CC; Jaekel BN; Newman RS; Goupell MJ
    J Acoust Soc Am; 2021 Oct; 150(4):2936. PubMed ID: 34717484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weighting of Prosodic and Lexical-Semantic Cues for Emotion Identification in Spectrally Degraded Speech and With Cochlear Implants.
    Richter ME; Chatterjee M
    Ear Hear; 2021 Nov-Dec 01; 42(6):1727-1740. PubMed ID: 34294630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral Contrast Effects Reveal Different Acoustic Cues for Vowel Recognition in Cochlear-Implant Users.
    Feng L; Oxenham AJ
    Ear Hear; 2020; 41(4):990-997. PubMed ID: 31815819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Release From Masking in Simulated Cochlear Implant Users With and Without Access to Low-Frequency Acoustic Hearing.
    Williges B; Dietz M; Hohmann V; Jürgens T
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do adults with cochlear implants rely on different acoustic cues for phoneme perception than adults with normal hearing?
    Moberly AC; Lowenstein JH; Tarr E; Caldwell-Tarr A; Welling DB; Shahin AJ; Nittrouer S
    J Speech Lang Hear Res; 2014 Apr; 57(2):566-82. PubMed ID: 24686722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using speech sounds to test functional spectral resolution in listeners with cochlear implants.
    Winn MB; Litovsky RY
    J Acoust Soc Am; 2015 Mar; 137(3):1430-42. PubMed ID: 25786954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perception of lexical stress cued by low-frequency pitch and insights into speech perception in noise for cochlear implant users and normal hearing adults.
    Dincer D'Alessandro H; Mancini P
    Eur Arch Otorhinolaryngol; 2019 Oct; 276(10):2673-2680. PubMed ID: 31177325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the Quality of Low-Frequency Acoustic Hearing: Implications for Combined Electroacoustic Stimulation With Cochlear Implants.
    Spitzer ER; Landsberger DM; Friedmann DR
    Ear Hear; 2021; 42(2):475-486. PubMed ID: 32976249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The perception of stress and intonation in children with a cochlear implant and a hearing aid.
    Hegarty L; Faulkner A
    Cochlear Implants Int; 2013 Nov; 14 Suppl 4():S35-9. PubMed ID: 24533762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of age on melody and timbre perception in simulations of electro-acoustic and cochlear-implant hearing.
    Arehart KH; Croghan NB; Muralimanohar RK
    Ear Hear; 2014; 35(2):195-202. PubMed ID: 24441739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cooperating and conflicting cues on speech intonation recognition by cochlear implant users and normal hearing listeners.
    Peng SC; Lu N; Chatterjee M
    Audiol Neurootol; 2009; 14(5):327-37. PubMed ID: 19372651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-frequency integration for consonant and vowel identification in bimodal hearing.
    Kong YY; Braida LD
    J Speech Lang Hear Res; 2011 Jun; 54(3):959-80. PubMed ID: 21060139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divided listening in the free field becomes asymmetric when acoustic cues are limited.
    Fumero MJ; Marrufo-Pérez MI; Eustaquio-Martín A; Lopez-Poveda EA
    Hear Res; 2022 Mar; 416():108444. PubMed ID: 35078133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of vowel length, word stress, and compound words and phrases by postlingually deafened cochlear implant listeners.
    Morris D; Magnusson L; Faulkner A; Jönsson R; Juul H
    J Am Acad Audiol; 2013 Oct; 24(9):879-90. PubMed ID: 24224994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Music Is More Enjoyable With Two Ears, Even If One of Them Receives a Degraded Signal Provided By a Cochlear Implant.
    Landsberger DM; Vermeire K; Stupak N; Lavender A; Neukam J; Van de Heyning P; Svirsky MA
    Ear Hear; 2020; 41(3):476-490. PubMed ID: 31469701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceptual Discrimination of Speaking Style Under Cochlear Implant Simulation.
    Tamati TN; Janse E; Başkent D
    Ear Hear; 2019; 40(1):63-76. PubMed ID: 29742545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.