These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36182363)

  • 1. Synchronization of Belousov-Zhabotinsky oscillators with electrochemical coupling in a spontaneous process.
    Liu Y; Pérez-Mercader J; Kiss IZ
    Chaos; 2022 Sep; 32(9):093128. PubMed ID: 36182363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel modes of synchronization in star networks of coupled chemical oscillators.
    Mersing D; Tyler SA; Ponboonjaroenchai B; Tinsley MR; Showalter K
    Chaos; 2021 Sep; 31(9):093127. PubMed ID: 34598462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization scenarios induced by delayed communication in arrays of diffusively coupled autonomous chemical oscillators.
    Budroni MA; Pagano G; Conte D; Paternoster B; D'ambrosio R; Ristori S; Abou-Hassan A; Rossi F
    Phys Chem Chem Phys; 2021 Aug; 23(32):17606-17615. PubMed ID: 34369507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosensitive Control and Network Synchronization of Chemical Oscillators.
    Carballosa A; Gomez-Varela AI; Bao-Varela C; Flores-Arias MT; Muñuzuri AP
    Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple model for synchronization of two Belousov-Zhabotinsky gels interacting mechanically.
    Sukegawa T; Yamada Y; Maeda S
    J Chem Phys; 2024 Mar; 160(10):. PubMed ID: 38465685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of New Belousov-Zhabotinsky Micro-Oscillators on the Basis of Silica Gel Beads.
    Mallphanov IL; Vanag VK
    J Phys Chem A; 2020 Jan; 124(2):272-282. PubMed ID: 31899640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the oscillatory dynamics of the Belousov-Zhabotinsky reaction using ruthenium nanoparticle decorated graphene.
    Prasanna Kumar DJ; Verma S; Jasuja K; Dayal P
    Phys Chem Chem Phys; 2019 Feb; 21(6):3164-3173. PubMed ID: 30676592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traveling waves propagating through coupled microbeads in the Belousov-Zhabotinsky reaction.
    Kuze M; Kitahata H; Nakata S
    Phys Chem Chem Phys; 2021 Nov; 23(42):24175-24179. PubMed ID: 34673865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulse-coupled Belousov-Zhabotinsky oscillators with frequency modulation.
    Horvath V; Epstein IR
    Chaos; 2018 Apr; 28(4):045108. PubMed ID: 31906644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators.
    Horváth V; Kutner DJ; Zeng MD; Epstein IR
    Chaos; 2019 Feb; 29(2):023128. PubMed ID: 30823715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of coherence in a population of diffusively coupled oscillators.
    Toth R; Taylor AF
    J Chem Phys; 2006 Dec; 125(22):224708. PubMed ID: 17176155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competition between global feedback and diffusion in coupled Belousov-Zhabotinsky oscillators.
    Ohno K; Ogawa T; Suematsu NJ
    Phys Rev E; 2019 Jan; 99(1-1):012208. PubMed ID: 30780237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for determining a coupling function in coupled oscillators with application to Belousov-Zhabotinsky oscillators.
    Miyazaki J; Kinoshita S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056209. PubMed ID: 17279986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical communication and dynamics of droplet emulsions in networks of Belousov-Zhabotinsky micro-oscillators produced by microfluidics.
    Torbensen K; Rossi F; Ristori S; Abou-Hassan A
    Lab Chip; 2017 Mar; 17(7):1179-1189. PubMed ID: 28239705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The excitable nature of polymerizing actin and the Belousov-Zhabotinsky reaction.
    Riedl M; Sixt M
    Front Cell Dev Biol; 2023; 11():1287420. PubMed ID: 38020899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization of electrochemical oscillators with differential coupling.
    Wickramasinghe M; Kiss IZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062911. PubMed ID: 24483535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distance dependent types of coupling of chemical micro-oscillators immersed in a water-in-oil microemulsion.
    Mallphanov IL; Vanag VK
    Phys Chem Chem Phys; 2021 Apr; 23(15):9130-9138. PubMed ID: 33885122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-phase collective synchronization with intrinsic in-phase coupling of two groups of electrochemical oscillators.
    Sebek M; Kawamura Y; Nott AM; Kiss IZ
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2160):20190095. PubMed ID: 31656145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse-coupled BZ oscillators with unequal coupling strengths.
    Horvath V; Kutner DJ; Chavis JT; Epstein IR
    Phys Chem Chem Phys; 2015 Feb; 17(6):4664-76. PubMed ID: 25587932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microreactor and imaging platform for studying chemical oscillators.
    Guo D; Li Y; Zheng B
    J Phys Chem A; 2013 Aug; 117(30):6402-8. PubMed ID: 23819868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.