BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36182396)

  • 1. Learning spatiotemporal chaos using next-generation reservoir computing.
    Barbosa WAS; Gauthier DJ
    Chaos; 2022 Sep; 32(9):093137. PubMed ID: 36182396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in physical reservoir computing: A review.
    Tanaka G; Yamane T; Héroux JB; Nakane R; Kanazawa N; Takeda S; Numata H; Nakano D; Hirose A
    Neural Netw; 2019 Jul; 115():100-123. PubMed ID: 30981085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning unseen coexisting attractors.
    Gauthier DJ; Fischer I; Röhm A
    Chaos; 2022 Nov; 32(11):113107. PubMed ID: 36456323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic exploration of reservoir computing for forecasting complex spatiotemporal dynamics.
    Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI
    Neural Netw; 2022 Sep; 153():530-552. PubMed ID: 35839598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics.
    Vlachas PR; Pathak J; Hunt BR; Sapsis TP; Girvan M; Ott E; Koumoutsakos P
    Neural Netw; 2020 Jun; 126():191-217. PubMed ID: 32248008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning based prediction of phase ordering dynamics.
    Chauhan S; Mandal S; Yadav V; Jaiswal PK; Priya M; Shrimali MD
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37327496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next generation reservoir computing.
    Gauthier DJ; Bollt E; Griffith A; Barbosa WAS
    Nat Commun; 2021 Sep; 12(1):5564. PubMed ID: 34548491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography.
    Antonik P; Gulina M; Pauwels J; Massar S
    Phys Rev E; 2018 Jul; 98(1-1):012215. PubMed ID: 30110744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-free forecasting of partially observable spatiotemporally chaotic systems.
    Gupta V; Li LKB; Chen S; Wan M
    Neural Netw; 2023 Mar; 160():297-305. PubMed ID: 36716509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybridizing traditional and next-generation reservoir computing to accurately and efficiently forecast dynamical systems.
    Chepuri R; Amzalag D; Antonsen TM; Girvan M
    Chaos; 2024 Jun; 34(6):. PubMed ID: 38838103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constraining chaos: Enforcing dynamical invariants in the training of reservoir computers.
    Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI
    Chaos; 2023 Oct; 33(10):. PubMed ID: 37788385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing the combination of data-driven and model-based elements in hybrid reservoir computing.
    Duncan D; Räth C
    Chaos; 2023 Oct; 33(10):. PubMed ID: 37831789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model.
    Pathak J; Wikner A; Fussell R; Chandra S; Hunt BR; Girvan M; Ott E
    Chaos; 2018 Apr; 28(4):041101. PubMed ID: 31906641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-informed reservoir computing for efficient time-series prediction.
    Köster F; Patel D; Wikner A; Jaurigue L; Lüdge K
    Chaos; 2023 Jul; 33(7):. PubMed ID: 37408150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrapolating tipping points and simulating non-stationary dynamics of complex systems using efficient machine learning.
    Köglmayr D; Räth C
    Sci Rep; 2024 Jan; 14(1):507. PubMed ID: 38177246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling chaos using edge computing hardware.
    Kent RM; Barbosa WAS; Gauthier DJ
    Nat Commun; 2024 May; 15(1):3886. PubMed ID: 38719856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Existence of reservoir with finite-dimensional output for universal reservoir computing.
    Sugiura S; Ariizumi R; Asai T; Azuma SI
    Sci Rep; 2024 Apr; 14(1):8448. PubMed ID: 38600157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine-learning potential of a single pendulum.
    Mandal S; Sinha S; Shrimali MD
    Phys Rev E; 2022 May; 105(5-1):054203. PubMed ID: 35706182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reservoir Computing with Delayed Input for Fast and Easy Optimisation.
    Jaurigue L; Robertson E; Wolters J; Lüdge K
    Entropy (Basel); 2021 Nov; 23(12):. PubMed ID: 34945866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer-RLS method and transfer-FORCE learning for simple and fast training of reservoir computing models.
    Tamura H; Tanaka G
    Neural Netw; 2021 Nov; 143():550-563. PubMed ID: 34304003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.