These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36182402)

  • 1. A global synchronization theorem for oscillators on a random graph.
    Kassabov M; Strogatz SH; Townsend A
    Chaos; 2022 Sep; 32(9):093119. PubMed ID: 36182402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dense networks that do not synchronize and sparse ones that do.
    Townsend A; Stillman M; Strogatz SH
    Chaos; 2020 Aug; 30(8):083142. PubMed ID: 32872810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sufficiently dense Kuramoto networks are globally synchronizing.
    Kassabov M; Strogatz SH; Townsend A
    Chaos; 2021 Jul; 31(7):073135. PubMed ID: 34340322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bifurcations in the Kuramoto model on graphs.
    Chiba H; Medvedev GS; Mizuhara MS
    Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbation analysis of complete synchronization in networks of phase oscillators.
    Tönjes R; Blasius B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026202. PubMed ID: 19792226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective Subnetwork Topology for Synchronizing Interconnected Networks of Coupled Phase Oscillators.
    Yamamoto H; Kubota S; Shimizu FA; Hirano-Iwata A; Niwano M
    Front Comput Neurosci; 2018; 12():17. PubMed ID: 29643771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved time complexity for spintronic oscillator ising machines compared to a popular classical optimization algorithm for the Max-Cut problem.
    Garg N; Singhal S; Aggarwal N; Sadashiva A; Muduli PK; Bhowmik D
    Nanotechnology; 2024 Aug; 35(46):. PubMed ID: 39142322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplexing topologies and time scales: The gains and losses of synchrony.
    Makovkin S; Kumar A; Zaikin A; Jalan S; Ivanchenko M
    Phys Rev E; 2017 Nov; 96(5-1):052214. PubMed ID: 29347745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the topology of synchrony optimized networks of a Kuramoto-model with non-identical oscillators.
    Kelly D; Gottwald GA
    Chaos; 2011 Jun; 21(2):025110. PubMed ID: 21721788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning to predict synchronization of coupled oscillators on randomly generated graphs.
    Bassi H; Yim RP; Vendrow J; Koduluka R; Zhu C; Lyu H
    Sci Rep; 2022 Sep; 12(1):15056. PubMed ID: 36065054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators.
    Roberts DC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031114. PubMed ID: 18517336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal global synchronization of partially forced Kuramoto oscillators.
    Climaco JS; Saa A
    Chaos; 2019 Jul; 29(7):073115. PubMed ID: 31370401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nature of synchronization transitions in random networks of coupled oscillators.
    Um J; Hong H; Park H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012810. PubMed ID: 24580284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model reduction for Kuramoto models with complex topologies.
    Hancock EJ; Gottwald GA
    Phys Rev E; 2018 Jul; 98(1-1):012307. PubMed ID: 30110852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graph partitions and cluster synchronization in networks of oscillators.
    Schaub MT; O'Clery N; Billeh YN; Delvenne JC; Lambiotte R; Barahona M
    Chaos; 2016 Sep; 26(9):094821. PubMed ID: 27781454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended mean-field approach for chimera states in random complex networks.
    Yi S; Um J; Kahng B
    Chaos; 2022 Mar; 32(3):033108. PubMed ID: 35364834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A random walk model for infection on graphs: spread of epidemics & rumours with mobile agents.
    Draief M; Ganesh A
    Discret Event Dyn Syst; 2011; 21(1):41-61. PubMed ID: 32214674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robustness of random graphs based on graph spectra.
    Wu J; Barahona M; Tan YJ; Deng HZ
    Chaos; 2012 Dec; 22(4):043101. PubMed ID: 23278036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Failure tolerance of spike phase synchronization in coupled neural networks.
    Jalili M
    Chaos; 2011 Sep; 21(3):033126. PubMed ID: 21974661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization and chimera states of frequency-weighted Kuramoto-oscillator networks.
    Wang H; Li X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066214. PubMed ID: 21797468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.