These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36182415)

  • 21. Enzyme dynamics from NMR spectroscopy.
    Palmer AG
    Acc Chem Res; 2015 Feb; 48(2):457-65. PubMed ID: 25574774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accurate Prediction of Protein NMR Spin Relaxation by Means of Polarizable Force Fields. Application to Strongly Anisotropic Rotational Diffusion.
    Marcellini M; Nguyen MH; Martin M; Hologne M; Walker O
    J Phys Chem B; 2020 Jun; 124(25):5103-5112. PubMed ID: 32501695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated NMR relaxation dispersion data analysis using NESSY.
    Bieri M; Gooley PR
    BMC Bioinformatics; 2011 Oct; 12():421. PubMed ID: 22032230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What Drives
    Kämpf K; Izmailov SA; Rabdano SO; Groves AT; Podkorytov IS; Skrynnikov NR
    Biophys J; 2018 Dec; 115(12):2348-2367. PubMed ID: 30527335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anisotropic collective motion contributes to nuclear spin relaxation in crystalline proteins.
    Lewandowski JR; Sein J; Blackledge M; Emsley L
    J Am Chem Soc; 2010 Feb; 132(4):1246-8. PubMed ID: 19916496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein Dynamics from Accurate Low-Field Site-Specific Longitudinal and Transverse Nuclear Spin Relaxation.
    Kadeřávek P; Bolik-Coulon N; Cousin SF; Marquardsen T; Tyburn JM; Dumez JN; Ferrage F
    J Phys Chem Lett; 2019 Oct; 10(19):5917-5922. PubMed ID: 31509419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of nano-second internal motion and determination of overall tumbling times independent of the time scale of internal motion in proteins from NMR relaxation data.
    Larsson G; Martinez G; Schleucher J; Wijmenga SS
    J Biomol NMR; 2003 Dec; 27(4):291-312. PubMed ID: 14512728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing Side-Chain Dynamics in Proteins by NMR Relaxation of Isolated
    Tugarinov V; Ceccon A; Clore GM
    J Phys Chem B; 2021 Apr; 125(13):3343-3352. PubMed ID: 33769060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The description of protein internal motions aids selection of ligand binding poses by the INPHARMA method.
    Stauch B; Orts J; Carlomagno T
    J Biomol NMR; 2012 Nov; 54(3):245-56. PubMed ID: 23001323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated NMR, Fluorescence, and Molecular Dynamics Benchmark Study of Protein Mechanics and Hydrodynamics.
    Möckel C; Kubiak J; Schillinger O; Kühnemuth R; Della Corte D; Schröder GF; Willbold D; Strodel B; Seidel CAM; Neudecker P
    J Phys Chem B; 2019 Feb; 123(7):1453-1480. PubMed ID: 30525615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Narrowing the gap between experimental and computational determination of methyl group dynamics in proteins.
    Hoffmann F; Xue M; Schäfer LV; Mulder FAA
    Phys Chem Chem Phys; 2018 Oct; 20(38):24577-24590. PubMed ID: 30226234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relating side-chain mobility in proteins to rotameric transitions: insights from molecular dynamics simulations and NMR.
    Hu H; Hermans J; Lee AL
    J Biomol NMR; 2005 Jun; 32(2):151-62. PubMed ID: 16034666
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Slow internal protein dynamics from water (1)H magnetic relaxation dispersion.
    Sunde EP; Halle B
    J Am Chem Soc; 2009 Dec; 131(51):18214-5. PubMed ID: 19954186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combining Molecular and Spin Dynamics Simulations with Solid-State NMR: A Case Study of Amphiphilic Lysine-Leucine Repeat Peptide Aggregates.
    Emani PS; Yimer YY; Davidowski SK; Gebhart RN; Ferreira HE; Kuprov I; Pfaendtner J; Drobny GP
    J Phys Chem B; 2019 Dec; 123(51):10915-10929. PubMed ID: 31769684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation.
    Prompers JJ; Brüschweiler R
    J Am Chem Soc; 2002 Apr; 124(16):4522-34. PubMed ID: 11960483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional protein dynamics on uncharted time scales detected by nanoparticle-assisted NMR spin relaxation.
    Xie M; Yu L; Bruschweiler-Li L; Xiang X; Hansen AL; Brüschweiler R
    Sci Adv; 2019 Aug; 5(8):eaax5560. PubMed ID: 31453342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple method to measure protein side-chain mobility using NMR chemical shifts.
    Berjanskii MV; Wishart DS
    J Am Chem Soc; 2013 Oct; 135(39):14536-9. PubMed ID: 24032347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective characterization of microsecond motions in proteins by NMR relaxation.
    Hansen DF; Feng H; Zhou Z; Bai Y; Kay LE
    J Am Chem Soc; 2009 Nov; 131(44):16257-65. PubMed ID: 19842628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microsecond motions probed by near-rotary-resonance R
    Krushelnitsky A; Gauto D; Rodriguez Camargo DC; Schanda P; Saalwächter K
    J Biomol NMR; 2018 May; 71(1):53-67. PubMed ID: 29845494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of Internal Protein Dynamics and Conformational Entropy by NMR Relaxation.
    Stetz MA; Caro JA; Kotaru S; Yao X; Marques BS; Valentine KG; Wand AJ
    Methods Enzymol; 2019; 615():237-284. PubMed ID: 30638531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.