BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36182565)

  • 21. Sex-specific features of optical coherence tomography detected plaque vulnerability related to clinical outcomes: insights from the CLIMA study.
    Biccirè FG; Debelak C; Varricchione G; Budassi S; Gatto L; Romagnoli E; Di Pietro R; Sammartini E; Marco V; Paoletti G; Burzotta F; Ozaki Y; Pastori D; Alfonso F; Arbustini E; Prati F
    Int J Cardiovasc Imaging; 2023 Apr; 39(4):873-881. PubMed ID: 36534217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical coherence tomography for characterization of cardiac allograft vasculopathy in late survivors of pediatric heart transplantation.
    Tomai F; De Luca L; Petrolini A; Di Vito L; Ghini AS; Corvo P; De Persio G; Parisi F; Pongiglione G; Giulia Gagliardi M; Prati F
    J Heart Lung Transplant; 2016 Jan; 35(1):74-79. PubMed ID: 26452998
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clinical Relevance of
    Lee JM; Bang JI; Koo BK; Hwang D; Park J; Zhang J; Yaliang T; Suh M; Paeng JC; Shiono Y; Kubo T; Akasaka T
    Circ Cardiovasc Imaging; 2017 Nov; 10(11):. PubMed ID: 29133478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of quantitative flow ratio value of left anterior descending and circumflex coronary artery in patients with Takotsubo syndrome.
    Ozaki Y; Gonzalo N; Salazar CH; Kuku KO; Mejía-Rentería H; Hideo-Kajita A; Núñez-Gil IJ; Escaned J; Waksman R; Garcia-Garcia HM
    Int J Cardiovasc Imaging; 2020 Jan; 36(1):3-8. PubMed ID: 31578638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography.
    Jia H; Abtahian F; Aguirre AD; Lee S; Chia S; Lowe H; Kato K; Yonetsu T; Vergallo R; Hu S; Tian J; Lee H; Park SJ; Jang YS; Raffel OC; Mizuno K; Uemura S; Itoh T; Kakuta T; Choi SY; Dauerman HL; Prasad A; Toma C; McNulty I; Zhang S; Yu B; Fuster V; Narula J; Virmani R; Jang IK
    J Am Coll Cardiol; 2013 Nov; 62(19):1748-58. PubMed ID: 23810884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relation of microchannel structure identified by optical coherence tomography to plaque vulnerability in patients with coronary artery disease.
    Kitabata H; Tanaka A; Kubo T; Takarada S; Kashiwagi M; Tsujioka H; Ikejima H; Kuroi A; Kataiwa H; Ishibashi K; Komukai K; Tanimoto T; Ino Y; Hirata K; Nakamura N; Mizukoshi M; Imanishi T; Akasaka T
    Am J Cardiol; 2010 Jun; 105(12):1673-8. PubMed ID: 20538113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo optical coherence tomography imaging and histopathology of healed coronary plaques.
    Shimokado A; Matsuo Y; Kubo T; Nishiguchi T; Taruya A; Teraguchi I; Shiono Y; Orii M; Tanimoto T; Yamano T; Ino Y; Hozumi T; Tanaka A; Muragaki Y; Akasaka T
    Atherosclerosis; 2018 Aug; 275():35-42. PubMed ID: 29859471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lesion-Specific and Vessel-Related Determinants of Fractional Flow Reserve Beyond Coronary Artery Stenosis.
    Ahmadi A; Leipsic J; Øvrehus KA; Gaur S; Bagiella E; Ko B; Dey D; LaRocca G; Jensen JM; Bøtker HE; Achenbach S; De Bruyne B; Nørgaard BL; Narula J
    JACC Cardiovasc Imaging; 2018 Apr; 11(4):521-530. PubMed ID: 29311033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical coherence tomography-defined plaque vulnerability in relation to functional stenosis severity stratified by fractional flow reserve and quantitative flow ratio.
    Kanno Y; Sugiyama T; Hoshino M; Usui E; Hamaya R; Kanaji Y; Murai T; Lee T; Yonetsu T; Kakuta T
    Catheter Cardiovasc Interv; 2020 Sep; 96(3):E238-E247. PubMed ID: 32012438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo evaluation of fibrous cap thickness by optical coherence tomography for positive remodeling and low-attenuation plaques assessed by computed tomography angiography.
    Sato A; Hoshi T; Kakefuda Y; Hiraya D; Watabe H; Kawabe M; Akiyama D; Koike A; Aonuma K
    Int J Cardiol; 2015 Mar; 182():419-25. PubMed ID: 25596470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gender differences in plaque characteristics of nonculprit lesions in patients with coronary artery disease.
    Tian J; Wang X; Tian J; Yu B
    BMC Cardiovasc Disord; 2019 Feb; 19(1):45. PubMed ID: 30808307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Serial analysis of coronary artery disease progression by artificial intelligence assisted coronary computed tomography angiography: early clinical experience.
    Cho GW; Anderson L; Quesada CG; Jennings RS; Min JK; Earls JP; Karlsberg RP
    BMC Cardiovasc Disord; 2022 Nov; 22(1):506. PubMed ID: 36435762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Serial coronary computed tomography angiography-verified coronary plaque progression: comparison of stented patients with or without diabetes.
    Shi R; Shi K; Yang ZG; Guo YK; Diao KY; Gao Y; Zhang Y; Huang S
    Cardiovasc Diabetol; 2019 Sep; 18(1):123. PubMed ID: 31551077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Associations between the Framingham Risk Score and coronary plaque characteristics as assessed by three-vessel optical coherence tomography.
    Vergallo R; Xing L; Minami Y; Soeda T; Ong DS; Gao L; Lee H; Guagliumi G; Biasucci LM; Crea F; Yu B; Uemura S; O'Donnell CJ; Jang IK
    Coron Artery Dis; 2016 Sep; 27(6):460-6. PubMed ID: 27218146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Difference of ruptured plaque morphology between asymptomatic coronary artery disease and non-ST elevation acute coronary syndrome patients: an optical coherence tomography study.
    Shimamura K; Ino Y; Kubo T; Nishiguchi T; Tanimoto T; Ozaki Y; Satogami K; Orii M; Shiono Y; Komukai K; Yamano T; Matsuo Y; Kitabata H; Yamaguchi T; Hirata K; Tanaka A; Imanishi T; Akasaka T
    Atherosclerosis; 2014 Aug; 235(2):532-7. PubMed ID: 24953494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of early changes in the coronary artery microstructure after heart transplantation: A prospective optical coherence tomography study.
    Clemmensen TS; Holm NR; Eiskjær H; Jakobsen L; Berg K; Neghabat O; Løgstrup BB; Christiansen EH; Dijkstra J; Terkelsen CJ; Maeng M; Poulsen SH
    J Heart Lung Transplant; 2018 Apr; 37(4):486-495. PubMed ID: 29128426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated lipid-rich plaque detection with short wavelength infra-red OCT system.
    Shimokado A; Kubo T; Nishiguchi T; Katayama Y; Taruya A; Ohta S; Kashiwagi M; Shimamura K; Kuroi A; Kameyama T; Shiono Y; Yamano T; Matsuo Y; Kitabata H; Ino Y; Hozumi T; Tanaka A; Akasaka T
    Eur Heart J Cardiovasc Imaging; 2018 Oct; 19(10):1174-1178. PubMed ID: 29186546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical coherence tomography assessment of the spatial distribution of culprit ruptured plaques and thin-cap fibroatheromas in acute coronary syndrome.
    Toutouzas K; Karanasos A; Riga M; Tsiamis E; Synetos A; Michelongona A; Papanikolaou A; Triantafyllou G; Tsioufis C; Stefanadis C
    EuroIntervention; 2012 Aug; 8(4):477-85. PubMed ID: 22917732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prognostic implications of coronary CT angiography-derived quantitative markers for the prediction of major adverse cardiac events.
    Tesche C; Plank F; De Cecco CN; Duguay TM; Albrecht MH; Varga-Szemes A; Bayer RR; Yang J; Jacks IL; Gramer BM; Ebersberger U; Hoffmann E; Chiaramida SA; Feuchtner G; Schoepf UJ
    J Cardiovasc Comput Tomogr; 2016; 10(6):458-465. PubMed ID: 27522574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative plaque analysis with A.I.-augmented CCTA in end-stage renal disease and complex CAD.
    Cho GW; Ghanem AK; Quesada CG; Crabtree TR; Jennings RS; Budoff MJ; Choi AD; Min JK; Karlsberg RP; Earls JP
    Clin Imaging; 2022 Sep; 89():155-161. PubMed ID: 35835019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.