These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 36182762)
1. REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction. Gu Y; Zheng S; Yin Q; Jiang R; Li J Comput Biol Med; 2022 Nov; 150():106127. PubMed ID: 36182762 [TBL] [Abstract][Full Text] [Related]
2. Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding. Qu X; Du G; Hu J; Cai Y Curr Comput Aided Drug Des; 2024; 20(6):1013-1024. PubMed ID: 37448360 [TBL] [Abstract][Full Text] [Related]
3. GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network. Yang R; Fu Y; Zhang Q; Zhang L Artif Intell Med; 2024 Apr; 150():102805. PubMed ID: 38553169 [TBL] [Abstract][Full Text] [Related]
4. Drug repositioning based on the heterogeneous information fusion graph convolutional network. Cai L; Lu C; Xu J; Meng Y; Wang P; Fu X; Zeng X; Su Y Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34378011 [TBL] [Abstract][Full Text] [Related]
5. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network. Muniyappan S; Rayan AXA; Varrieth GT Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255 [TBL] [Abstract][Full Text] [Related]
6. Metapath-aggregated heterogeneous graph neural network for drug-target interaction prediction. Li M; Cai X; Xu S; Ji H Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36592060 [TBL] [Abstract][Full Text] [Related]
7. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning. Zhang Y; Wang Z; Wei H; Chen M BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961 [TBL] [Abstract][Full Text] [Related]
8. Toward drug-miRNA resistance association prediction by positional encoding graph neural network and multi-channel neural network. Zhao C; Wang H; Qi W; Liu S Methods; 2022 Nov; 207():81-89. PubMed ID: 36167292 [TBL] [Abstract][Full Text] [Related]
9. IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction. Li J; Wang J; Lv H; Zhang Z; Wang Z IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):655-665. PubMed ID: 34115592 [TBL] [Abstract][Full Text] [Related]
10. Prediction of Drug-Disease Associations Based on Multi-Kernel Deep Learning Method in Heterogeneous Graph Embedding. Li D; Xiao Z; Sun H; Jiang X; Zhao W; Shen X IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(1):120-128. PubMed ID: 38051617 [TBL] [Abstract][Full Text] [Related]
11. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network. Zhou D; Xu Z; Li W; Xie X; Peng S Bioinformatics; 2021 Dec; 37(23):4485-4492. PubMed ID: 34180970 [TBL] [Abstract][Full Text] [Related]
12. Drug repositioning based on weighted local information augmented graph neural network. Meng Y; Wang Y; Xu J; Lu C; Tang X; Peng T; Zhang B; Tian G; Yang J Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38019732 [TBL] [Abstract][Full Text] [Related]
13. A knowledge graph-based disease-gene prediction system using multi-relational graph convolution networks. Gao Z; Pan Y; Ding P; Xu R AMIA Annu Symp Proc; 2022; 2022():468-476. PubMed ID: 37128437 [TBL] [Abstract][Full Text] [Related]
14. Predicting Drug-Protein Interactions by Self-Adaptively Adjusting the Topological Structure of the Heterogeneous Network. Tang R; Sun C; Huang J; Li M; Wei J; Liu J IEEE J Biomed Health Inform; 2023 Nov; 27(11):5675-5684. PubMed ID: 37672364 [TBL] [Abstract][Full Text] [Related]
15. Prediction of drug-disease associations by integrating common topologies of heterogeneous networks and specific topologies of subnets. Gao L; Cui H; Zhang T; Sheng N; Xuan P Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34850815 [TBL] [Abstract][Full Text] [Related]
16. RLFDDA: a meta-path based graph representation learning model for drug-disease association prediction. Zhang ML; Zhao BW; Su XR; He YZ; Yang Y; Hu L BMC Bioinformatics; 2022 Dec; 23(1):516. PubMed ID: 36456957 [TBL] [Abstract][Full Text] [Related]
17. KG-Predict: A knowledge graph computational framework for drug repurposing. Gao Z; Ding P; Xu R J Biomed Inform; 2022 Aug; 132():104133. PubMed ID: 35840060 [TBL] [Abstract][Full Text] [Related]
18. FuseLinker: Leveraging LLM's pre-trained text embeddings and domain knowledge to enhance GNN-based link prediction on biomedical knowledge graphs. Xiao Y; Zhang S; Zhou H; Li M; Yang H; Zhang R J Biomed Inform; 2024 Oct; 158():104730. PubMed ID: 39326691 [TBL] [Abstract][Full Text] [Related]
19. EGeRepDR: An enhanced genetic-based representation learning for drug repurposing using multiple biomedical sources. Muniyappan S; Rayan AXA; Varrieth GT J Biomed Inform; 2023 Nov; 147():104528. PubMed ID: 37858852 [TBL] [Abstract][Full Text] [Related]
20. Drug-disease association prediction with literature based multi-feature fusion. Kang H; Hou L; Gu Y; Lu X; Li J; Li Q Front Pharmacol; 2023; 14():1205144. PubMed ID: 37284317 [No Abstract] [Full Text] [Related] [Next] [New Search]