BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36182855)

  • 1. Polydiacetylene-based hydrogel beads as colorimetric sensors for the detection of biogenic amines in spoiled meat.
    Jang S; Son SU; Kim J; Kim H; Lim J; Seo SB; Kang B; Kang T; Jung J; Seo S; Lim EK
    Food Chem; 2023 Mar; 403():134317. PubMed ID: 36182855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric sensor and LDI-MS detection of biogenic amines in food spoilage based on porous PLA and graphene oxide.
    Siripongpreda T; Siralertmukul K; Rodthongkum N
    Food Chem; 2020 Nov; 329():127165. PubMed ID: 32504919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric ammonia (NH
    Sutthasupa S; Padungkit C; Suriyong S
    Food Chem; 2021 Nov; 362():130151. PubMed ID: 34087707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplex Detection of Biogenic Amines for Meat Freshness Monitoring Using Nanoplasmonic Colorimetric Sensor Array.
    Abbasi-Moayed S; Orouji A; Hormozi-Nezhad MR
    Biosensors (Basel); 2023 Aug; 13(8):. PubMed ID: 37622889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-in-one via syringe needle-based device: sampling, microextraction and peroxidase-like catalysis for colorimetric detection of the change of biogenic amines levels with time in meat.
    Xu M; Mao W; Hu T; Xu M; Cai X; Shen W; Tang S; Shi H; Tan L; Liu C
    Food Chem; 2021 Oct; 358():129900. PubMed ID: 33933980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorimetric Paper Sensor for Food Spoilage Based on Biogenic Amine Monitoring.
    Calabretta MM; Gregucci D; Desiderio R; Michelini E
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Carbon Disulfide Added Colloidal Gold Colorimetric Sensor for the Rapid and On-Site Detection of Biogenic Amines.
    Choi N; Park B; Lee MJ; Umapathi R; Oh SY; Cho Y; Huh YS
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33802387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of pork spoilage by colorimetric gas sensor array based on natural pigments.
    Huang XW; Zou XB; Shi JY; Guo Y; Zhao JW; Zhang J; Hao L
    Food Chem; 2014 Feb; 145():549-54. PubMed ID: 24128513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-in-one versatile sensor for concise detecting biogenic amines and beef freshness.
    Wang D; Ding X; Xie J; Wang J; Li G; Zhou X
    Anal Chim Acta; 2024 Jan; 1285():342025. PubMed ID: 38057062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern-based colorimetric sensor array to monitor food spoilage using automated high-throughput analysis.
    Singh H; Singh G; Kaur N; Singh N
    Biosens Bioelectron; 2022 Jan; 196():113687. PubMed ID: 34649095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital analysis of polydiacetylene quality tags for contactless monitoring of milk.
    Weston M; Kuchel RP; Chandrawati R
    Anal Chim Acta; 2021 Mar; 1148():238190. PubMed ID: 33516381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Polydiacetylene-Based Colorimetric Sensor as an Active Use-By Date for Plant-Based Milk Alternatives.
    Weston M; Kuchel RP; Chandrawati R
    Macromol Rapid Commun; 2020 Sep; 41(18):e2000172. PubMed ID: 32459057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogenic amines- and sulfides-responsive gold nanoparticles for real-time visual detection of raw meat, fish, crustaceans, and preserved meat.
    Chow CF
    Food Chem; 2020 May; 311():125908. PubMed ID: 31753679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective recognition of ammonia and aliphatic amines by C-N fused phenazine derivative: A hydrogel based smartphone assisted 'opto-electronic nose' for food spoilage evaluation with potent anti-counterfeiting activity and a potential prostate cancer biomarker sensor.
    Das R; Bej S; Murmu NC; Banerjee P
    Anal Chim Acta; 2022 Apr; 1202():339597. PubMed ID: 35341532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, characterization, and sensing behavior of polydiacetylene liposomes embedded in alginate fibers.
    Kauffman JS; Ellerbrock BM; Stevens KA; Brown PJ; Pennington WT; Hanks TW
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1287-91. PubMed ID: 20355925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a sensor layer for the optical detection of amines during food spoilage.
    Schaude C; Meindl C; Fröhlich E; Attard J; Mohr GJ
    Talanta; 2017 Aug; 170():481-487. PubMed ID: 28501199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a rapid colorimetric strip method for determination of volatile bases in mahi-mahi and tuna.
    Bai J; Baker SM; Goodrich-Schneider RM; Montazeri N; Sarnoski PJ
    J Food Sci; 2021 Jun; 86(6):2398-2409. PubMed ID: 33928640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimuli-Responsive Matrix-Assisted Colorimetric Water Indicator of Polydiacetylene Nanofibers.
    Seo S; Lee J; Kwon MS; Seo D; Kim J
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20342-8. PubMed ID: 26299689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between microbial flora, sensory changes and biogenic amines formation in fresh chicken meat stored aerobically or under modified atmosphere packaging at 4 degrees C: possible role of biogenic amines as spoilage indicators.
    Balamatsia CC; Paleologos EK; Kontominas MG; Savvaidis IN
    Antonie Van Leeuwenhoek; 2006 Jan; 89(1):9-17. PubMed ID: 16528580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Providing Multicolor Plasmonic Patterns with Au@Ag Core-Shell Nanostructures for Visual Discrimination of Biogenic Amines.
    Orouji A; Ghasemi F; Bigdeli A; Hormozi-Nezhad MR
    ACS Appl Mater Interfaces; 2021 May; 13(17):20865-20874. PubMed ID: 33887901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.