These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36183423)

  • 1. SIM-STEM Lab: Incorporating Compressed Sensing Theory for Fast STEM Simulation.
    Robinson AW; Nicholls D; Wells J; Moshtaghpour A; Kirkland A; Browning ND
    Ultramicroscopy; 2022 Dec; 242():113625. PubMed ID: 36183423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards real-time STEM simulations through targeted subsampling strategies.
    Robinson AW; Wells J; Nicholls D; Moshtaghpour A; Chi M; Kirkland AI; Browning ND
    J Microsc; 2023 Apr; 290(1):53-66. PubMed ID: 36800515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sub-Sampled Imaging for STEM: Maximising Image Speed, Resolution and Precision Through Reconstruction Parameter Refinement.
    Nicholls D; Wells J; Stevens A; Zheng Y; Castagna J; Browning ND
    Ultramicroscopy; 2022 Mar; 233():113451. PubMed ID: 34915288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressed Sensing of Scanning Transmission Electron Microscopy (STEM) With Nonrectangular Scans.
    Li X; Dyck O; Kalinin SV; Jesse S
    Microsc Microanal; 2018 Dec; 24(6):623-633. PubMed ID: 30588912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images.
    Stevens A; Yang H; Carin L; Arslan I; Browning ND
    Microscopy (Oxf); 2014 Feb; 63(1):41-51. PubMed ID: 24151325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes.
    Nicholls D; Lee J; Amari H; Stevens AJ; Mehdi BL; Browning ND
    Nanoscale; 2020 Oct; 12(41):21248-21254. PubMed ID: 33063813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT.
    Park JC; Song B; Kim JS; Park SH; Kim HK; Liu Z; Suh TS; Song WY
    Med Phys; 2012 Mar; 39(3):1207-17. PubMed ID: 22380351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image simulation for atomic resolution secondary electron image.
    Wu L; Egerton RF; Zhu Y
    Ultramicroscopy; 2012 Dec; 123():66-73. PubMed ID: 22940532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inpainting vs denoising for dose reduction in scanning-beam microscopies.
    Sanders T; Dwyer C
    IEEE Trans Image Process; 2019 Jul; ():. PubMed ID: 31331890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A continuous sampling pattern design algorithm for atomic force microscopy images.
    Luo Y; Andersson SB
    Ultramicroscopy; 2019 Jan; 196():167-179. PubMed ID: 30412842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressed sensing for STEM tomography.
    Donati L; Nilchian M; Trépout S; Messaoudi C; Marco S; Unser M
    Ultramicroscopy; 2017 Aug; 179():47-56. PubMed ID: 28411510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of atomic force microscopy image using compressed sensing.
    Han G; Lin B; Lin Y
    Micron; 2018 Feb; 105():1-10. PubMed ID: 29132029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on Blind Super-Resolution Technology for Infrared Images of Power Equipment Based on Compressed Sensing Theory.
    Wang Y; Wang L; Liu B; Zhao H
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure assisted compressed sensing reconstruction of undersampled AFM images.
    Oxvig CS; Arildsen T; Larsen T
    Ultramicroscopy; 2017 Jan; 172():1-9. PubMed ID: 27721127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method to remove impulse noise from atomic force microscopy images based on Bayesian compressed sensing.
    Zhang Y; Li Y; Song Z; Wang Z; Qian J; Yao J
    Beilstein J Nanotechnol; 2019; 10():2346-2356. PubMed ID: 31886111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron beam broadening in electron-transparent samples at low electron energies.
    Hugenschmidt M; Müller E; Gerthsen D
    J Microsc; 2019 Jun; 274(3):150-157. PubMed ID: 31001840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How should a fixed budget of dwell time be spent in scanning electron microscopy to optimize image quality?
    Trampert P; Bourghorbel F; Potocek P; Peemen M; Schlinkmann C; Dahmen T; Slusallek P
    Ultramicroscopy; 2018 Aug; 191():11-17. PubMed ID: 29715521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prior data assisted compressed sensing: a novel MR imaging strategy for real time tracking of lung tumors.
    Yip E; Yun J; Wachowicz K; Heikal AA; Gabos Z; Rathee S; Fallone BG
    Med Phys; 2014 Aug; 41(8):082301. PubMed ID: 25086550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospective acceleration of diffusion tensor imaging with compressed sensing using adaptive dictionaries.
    McClymont D; Teh I; Whittington HJ; Grau V; Schneider JE
    Magn Reson Med; 2016 Jul; 76(1):248-58. PubMed ID: 26302363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.