BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36183424)

  • 1. Critical comparison of statistical methods for quantifying variability and uncertainty of microbial responses from experimental data.
    Garre A; Pielaat A; Zwietering MH; den Besten HMW; Smid JH
    Int J Food Microbiol; 2022 Dec; 383():109935. PubMed ID: 36183424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multilevel modelling as a tool to include variability and uncertainty in quantitative microbiology and risk assessment. Thermal inactivation of Listeria monocytogenes as proof of concept.
    Garre A; Zwietering MH; den Besten HMW
    Food Res Int; 2020 Nov; 137():109374. PubMed ID: 33233076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An educationally inspired illustration of two-dimensional Quantitative Microbiological Risk Assessment (QMRA) and sensitivity analysis.
    Vásquez GA; Busschaert P; Haberbeck LU; Uyttendaele M; Geeraerd AH
    Int J Food Microbiol; 2014 Nov; 190():31-43. PubMed ID: 25173917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating parameter uncertainty into Quantitative Microbial Risk Assessment (QMRA).
    Donald M; Mengersen K; Toze S; Sidhu JP; Cook A
    J Water Health; 2011 Mar; 9(1):10-26. PubMed ID: 21301111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainty distribution associated with estimating a proportion in microbial risk assessment.
    Miconnet N; Cornu M; Beaufort A; Rosso L; Denis JB
    Risk Anal; 2005 Feb; 25(1):39-48. PubMed ID: 15787755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Bayesian modelling in risk assessment: application to growth of Listeria monocytogenes and food flora in cold-smoked salmon.
    Delignette-Muller ML; Cornu M; Pouillot R; Denis JB
    Int J Food Microbiol; 2006 Feb; 106(2):195-208. PubMed ID: 16216374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of uncertainty and variability in bacterial growth using Bayesian inference. Application to Listeria monocytogenes.
    Pouillot R; Albert I; Cornu M; Denis JB
    Int J Food Microbiol; 2003 Mar; 81(2):87-104. PubMed ID: 12457583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QMRA and decision-making: are we handling measurement errors associated with pathogen concentration data correctly?
    Schmidt PJ; Emelko MB
    Water Res; 2011 Jan; 45(2):427-38. PubMed ID: 20851444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo.
    Schmidt PJ; Pintar KD; Fazil AM; Topp E
    Risk Anal; 2013 Sep; 33(9):1677-93. PubMed ID: 23311599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A secondary model for the effect of pH on the variability in growth fitness of Listeria innocua strains.
    Garcia-Gutierrez E; Monteoliva García G; Bodea I; Cotter PD; Iguaz A; Garre A
    Food Res Int; 2024 Jun; 186():114314. PubMed ID: 38729708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Strain Variability in Inactivation of Campylobacter jejuni in Simulated Gastric Fluid by Using Hierarchical Bayesian Modeling.
    Koyama K; Ranta J; Takeoka K; Abe H; Koseki S
    Appl Environ Microbiol; 2021 Jul; 87(15):e0091821. PubMed ID: 34047637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Case studies in Bayesian microbial risk assessments.
    Kennedy MC; Clough HE; Turner J
    Environ Health; 2009 Dec; 8 Suppl 1(Suppl 1):S19. PubMed ID: 20102586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying variability on thermal resistance of Listeria monocytogenes.
    Aryani DC; den Besten HM; Hazeleger WC; Zwietering MH
    Int J Food Microbiol; 2015 Jan; 193():130-8. PubMed ID: 25462932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain Variability of
    Aalto-Araneda M; Pöntinen A; Pesonen M; Corander J; Markkula A; Tasara T; Stephan R; Korkeala H
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31900307
    [No Abstract]   [Full Text] [Related]  

  • 15. Beyond QMRA: Modelling microbial health risk as a complex system using Bayesian networks.
    Beaudequin D; Harden F; Roiko A; Stratton H; Lemckert C; Mengersen K
    Environ Int; 2015 Jul; 80():8-18. PubMed ID: 25827265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying strain variability in modeling growth of Listeria monocytogenes.
    Aryani DC; den Besten HM; Hazeleger WC; Zwietering MH
    Int J Food Microbiol; 2015 Sep; 208():19-29. PubMed ID: 26011600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncertainty in thermal process calculations due to variability in first-order and Weibull kinetic parameters.
    Halder A; Datta AK; Geedipalli SS
    J Food Sci; 2007 May; 72(4):E155-67. PubMed ID: 17995767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Addressing and reducing parameter uncertainty in quantitative microbial risk assessment by incorporating external information via Bayesian hierarchical modeling.
    Seis W; Rouault P; Medema G
    Water Res; 2020 Oct; 185():116202. PubMed ID: 32738602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Most Probable Curve method - A robust approach to estimate kinetic models from low plate count data resulting in reduced uncertainty.
    Garre A; Zwietering MH; van Boekel MAJS
    Int J Food Microbiol; 2022 Nov; 380():109871. PubMed ID: 35985079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastically modeling Listeria monocytogenes growth in farm tank milk.
    Albert I; Pouillot R; Denis JB
    Risk Anal; 2005 Oct; 25(5):1171-85. PubMed ID: 16297223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.