BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36184009)

  • 21. Remote ischemia preconditioning increases red blood cell deformability through red blood cell-nitric oxide synthase activation.
    Grau M; Kollikowski A; Bloch W
    Clin Hemorheol Microcirc; 2016 Sep; 63(3):185-97. PubMed ID: 26890111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increase in Red Blood Cell-Nitric Oxide Synthase Dependent Nitric Oxide Production during Red Blood Cell Aging in Health and Disease: A Study on Age Dependent Changes of Rheologic and Enzymatic Properties in Red Blood Cells.
    Bizjak DA; Brinkmann C; Bloch W; Grau M
    PLoS One; 2015; 10(4):e0125206. PubMed ID: 25902315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.
    Sosa JM; Nielsen ND; Vignes SM; Chen TG; Shevkoplyas SS
    Clin Hemorheol Microcirc; 2014; 57(3):275-89. PubMed ID: 23603326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of hemoglobin oxygenation in the modulation of red blood cell mechanical properties by nitric oxide.
    Uyuklu M; Meiselman HJ; Baskurt OK
    Nitric Oxide; 2009 Aug; 21(1):20-6. PubMed ID: 19362160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Limited effects of activated protein C on red blood cell deformability.
    Piagnerelli M; Njimi H; Coelho TV; Reggiori G; Castanares Zapatero D; Donadello K; Vincent JL
    Clin Hemorheol Microcirc; 2013; 53(4):387-91. PubMed ID: 22504218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of nitric oxide on red blood cell deformability.
    Bor-Kucukatay M; Wenby RB; Meiselman HJ; Baskurt OK
    Am J Physiol Heart Circ Physiol; 2003 May; 284(5):H1577-84. PubMed ID: 12521942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitric oxide, vasodilation and the red blood cell.
    Simmonds MJ; Detterich JA; Connes P
    Biorheology; 2014; 51(2-3):121-34. PubMed ID: 24819865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Additive effect of red blood cell rigidity and adherence to endothelial cells in inducing vascular resistance.
    Kaul DK; Koshkaryev A; Artmann G; Barshtein G; Yedgar S
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1788-93. PubMed ID: 18757485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Association Between Nitric Oxide, Oxidative Stress, Eryptosis, Red Blood Cell Microparticles, and Vascular Function in Sickle Cell Anemia.
    Nader E; Romana M; Guillot N; Fort R; Stauffer E; Lemonne N; Garnier Y; Skinner SC; Etienne-Julan M; Robert M; Gauthier A; Cannas G; Antoine-Jonville S; Tressières B; Hardy-Dessources MD; Bertrand Y; Martin C; Renoux C; Joly P; Grau M; Connes P
    Front Immunol; 2020; 11():551441. PubMed ID: 33250889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shear stress-induced improvement of red blood cell deformability.
    Meram E; Yilmaz BD; Bas C; Atac N; Yalcin O; Meiselman HJ; Baskurt OK
    Biorheology; 2013; 50(3-4):165-76. PubMed ID: 23863281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Red blood cell (RBC) deformability, RBC aggregability and tissue oxygenation in hypertension.
    Cicco G; Pirrelli A
    Clin Hemorheol Microcirc; 1999; 21(3-4):169-77. PubMed ID: 10711739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New functional aspects of the L-arginine-nitric oxide metabolism within the circulating blood.
    Kleinbongard P; Keymel S; Kelm M
    Thromb Haemost; 2007 Nov; 98(5):970-4. PubMed ID: 18000600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endurance training alters enzymatic and rheological properties of red blood cells (RBC) in type 2 diabetic men during in vivo RBC aging.
    Brinkmann C; Bizjak DA; Bischof S; Latsch J; Brixius K; Bloch W; Grau M
    Clin Hemorheol Microcirc; 2016 Sep; 63(3):173-84. PubMed ID: 26410865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging.
    Mohanty JG; Nagababu E; Rifkind JM
    Front Physiol; 2014; 5():84. PubMed ID: 24616707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitric oxide inhibits hypoxia-induced impairment of human RBC deformability through reducing the cross-linking of membrane protein band 3.
    Zhao Y; Wang X; Wang R; Chen D; Noviana M; Zhu H
    J Cell Biochem; 2019 Jan; 120(1):305-320. PubMed ID: 30218451
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hyperbaric oxygenation improve red blood cell deformability in patients with acute or chronic inflammation.
    Steenebruggen F; Jacobs D; Delporte C; Van Antwerpen P; Boudjeltia KZ; Biston P; Piagnerelli M
    Microvasc Res; 2023 Jul; 148():104534. PubMed ID: 37030528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systemic lupus erythematosus serum deposits C4d on red blood cells, decreases red blood cell membrane deformability, and promotes nitric oxide production.
    Ghiran IC; Zeidel ML; Shevkoplyas SS; Burns JM; Tsokos GC; Kyttaris VC
    Arthritis Rheum; 2011 Feb; 63(2):503-12. PubMed ID: 21280005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of red blood cell deformability and Na,K-ATPase function in selected risk factors of cardiovascular diseases in humans: focus on hypertension, diabetes mellitus and hypercholesterolemia.
    Radosinska J; Vrbjar N
    Physiol Res; 2016 Sep; 65 Suppl 1():S43-54. PubMed ID: 27643939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Erythrocyte deformability and aggregation responses to intermittent and continuous artificial gravity exposure.
    Marijke G; Vera A; Tobias V; Wilhelm B; Stefan S
    Life Sci Space Res (Amst); 2017 Feb; 12():61-66. PubMed ID: 28212709
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Endothelial secretogogues and deformability of erythrocytes.
    Korbut RA; Adamek-Guzik T; Madej J; Korbut R
    J Physiol Pharmacol; 2002 Dec; 53(4 Pt 1):655-65. PubMed ID: 12512700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.