BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36184013)

  • 1. Genomics and transcriptomics-guided metabolic engineering Corynebacterium glutamicum for l-arginine production.
    Zhao Z; Cai M; Liu Y; Hu M; Yang F; Zhu R; Xu M; Rao Z
    Bioresour Technol; 2022 Nov; 364():128054. PubMed ID: 36184013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply.
    Zhan M; Kan B; Dong J; Xu G; Han R; Ni Y
    J Ind Microbiol Biotechnol; 2019 Jan; 46(1):45-54. PubMed ID: 30446890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of the intracellular environment for enhancing l-arginine production of Corynebacterium glutamicum by inactivation of H
    Man Z; Rao Z; Xu M; Guo J; Yang T; Zhang X; Xu Z
    Metab Eng; 2016 Nov; 38():310-321. PubMed ID: 27474351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Corynebacterium glutamicum for L-arginine production.
    Park SH; Kim HU; Kim TY; Park JS; Kim SS; Lee SY
    Nat Commun; 2014 Aug; 5():4618. PubMed ID: 25091334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Escherichia coli for efficient production of L-arginine.
    Wang HD; Xu JZ; Zhang WG
    Appl Microbiol Biotechnol; 2022 Sep; 106(17):5603-5613. PubMed ID: 35931894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production.
    Zhang B; Yu M; Zhou Y; Li Y; Ye BC
    Microb Cell Fact; 2017 Sep; 16(1):158. PubMed ID: 28938890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production.
    Man Z; Xu M; Rao Z; Guo J; Yang T; Zhang X; Xu Z
    Sci Rep; 2016 Jun; 6():28629. PubMed ID: 27338253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY; Lee J; Lee SY
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of acetate synthesis, enhanced arginine export, and supply of precursors, cofactors, and energy for improved synthesis of L-arginine by Escherichia coli.
    Wang HD; Xu JZ; Zhang WG
    Appl Microbiol Biotechnol; 2023 Jun; 107(11):3593-3603. PubMed ID: 37097502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum.
    Feng J; Quan Y; Gu Y; Liu F; Huang X; Shen H; Dang Y; Cao M; Gao W; Lu X; Wang Y; Song C; Wang S
    Microb Cell Fact; 2017 May; 16(1):88. PubMed ID: 28532451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Rational metabolic engineering of
    Liu J; Qiao Z; Zhao Y; Xu M; Zhang X; Yang T; Rao Z
    Sheng Wu Gong Cheng Xue Bao; 2023 Aug; 39(8):3273-3289. PubMed ID: 37622360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. l-arginine production in
    Jiang Y; Sheng Q; Wu XY; Ye BC; Zhang B
    Crit Rev Biotechnol; 2021 Mar; 41(2):172-185. PubMed ID: 33153325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing l-glutamine production in Corynebacterium glutamicum by rational metabolic engineering combined with a two-stage pH control strategy.
    Lv Q; Hu M; Tian L; Liu F; Wang Q; Xu M; Rao Z
    Bioresour Technol; 2021 Dec; 341():125799. PubMed ID: 34425465
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Zhang J; Qian F; Dong F; Wang Q; Yang J; Jiang Y; Yang S
    ACS Synth Biol; 2020 Jul; 9(7):1897-1906. PubMed ID: 32627539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cpf1-Assisted Engineering of Corynebacterium glutamicum SNK118 for Enhanced L-Ornithine Production by NADP-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase and NADH-Dependent Glutamate Dehydrogenase.
    Dong J; Kan B; Liu H; Zhan M; Wang S; Xu G; Han R; Ni Y
    Appl Biochem Biotechnol; 2020 Jul; 191(3):955-967. PubMed ID: 31950445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PII Signal Transduction Protein GlnK Alleviates Feedback Inhibition of
    Xu M; Tang M; Chen J; Yang T; Zhang X; Shao M; Xu Z; Rao Z
    Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32060028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase.
    Okai N; Takahashi C; Hatada K; Ogino C; Kondo A
    AMB Express; 2014; 4():20. PubMed ID: 24949255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High production of 4-hydroxyisoleucine in Corynebacterium glutamicum by multistep metabolic engineering.
    Zhang C; Li Y; Ma J; Liu Y; He J; Li Y; Zhu F; Meng J; Zhan J; Li Z; Zhao L; Ma Q; Fan X; Xu Q; Xie X; Chen N
    Metab Eng; 2018 Sep; 49():287-298. PubMed ID: 30223026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system.
    Schneider J; Eberhardt D; Wendisch VF
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):169-78. PubMed ID: 22370950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.