These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 36184128)
1. Water-soluble polysaccharides promoting production of redispersible nanocellulose. Hu L; Xu W; Gustafsson J; Koppolu R; Wang Q; Rosqvist E; Sundberg A; Peltonen J; Willför S; Toivakka M; Xu C Carbohydr Polym; 2022 Dec; 297():119976. PubMed ID: 36184128 [TBL] [Abstract][Full Text] [Related]
2. Influence of Nanocellulose Additive on the Film Properties of Native Rice Starch-based Edible Films for Food Packaging. Jeevahan J; Chandrasekaran M Recent Pat Nanotechnol; 2019; 13(3):222-233. PubMed ID: 31553298 [TBL] [Abstract][Full Text] [Related]
3. Preparation of sustainable oxidized nanocellulose films with high UV shielding effect, high transparency and high strength. Huang X; Huang R; Zhang Q; Fan J; Zhang Z; Huang J Int J Biol Macromol; 2024 Apr; 263(Pt 2):130087. PubMed ID: 38342262 [TBL] [Abstract][Full Text] [Related]
4. Characterization of nanocellulose and activated carbon nanocomposite films' biosensing properties for smart packaging. Sobhan A; Muthukumarappan K; Cen Z; Wei L Carbohydr Polym; 2019 Dec; 225():115189. PubMed ID: 31521300 [TBL] [Abstract][Full Text] [Related]
5. One-pot treatment of cellulose using iron oxide catalysts to produce nanocellulose and water-soluble oxidised cellulose. Vijay P; Batchelor W; Saito K Carbohydr Polym; 2022 Apr; 282():119060. PubMed ID: 35123735 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of mechanical and thermal properties of Ixora coccinea L. plant root derived nanocellulose using polyethylene glycol-glutaraldehyde system. Unni R; Reshmy R; Latha MS; Philip E; Sindhu R; Binod P; Pandey A; Awasthi MK Chemosphere; 2022 Jul; 298():134324. PubMed ID: 35307393 [TBL] [Abstract][Full Text] [Related]
7. High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability. Aulin C; Salazar-Alvarez G; Lindström T Nanoscale; 2012 Oct; 4(20):6622-8. PubMed ID: 22976562 [TBL] [Abstract][Full Text] [Related]
8. Influence of Nanocellulose Structure on Paper Reinforcement. Perdoch W; Cao Z; Florczak P; Markiewicz R; Jarek M; Olejnik K; Mazela B Molecules; 2022 Jul; 27(15):. PubMed ID: 35897873 [TBL] [Abstract][Full Text] [Related]
9. A novel salt-barrier method of preparation flexible temperature resistant full-component nanocellulose membranes. Huang X; Zhong Y; Chen L; Ding X; Chen H; Hu Z; Zhou X; Wang M; Dai X Int J Biol Macromol; 2023 Dec; 253(Pt 7):127387. PubMed ID: 37838107 [TBL] [Abstract][Full Text] [Related]
10. Prevention of interfibril hornification by replacing water in nanocellulose gel with low molecular weight liquid poly(ethylene glycol). Santmarti A; Tammelin T; Lee KY Carbohydr Polym; 2020 Dec; 250():116870. PubMed ID: 33049819 [TBL] [Abstract][Full Text] [Related]
11. Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments. Sirviö JA; Kolehmainen A; Visanko M; Liimatainen H; Niinimäki J; Hormi OE ACS Appl Mater Interfaces; 2014 Aug; 6(16):14384-90. PubMed ID: 25089516 [TBL] [Abstract][Full Text] [Related]
12. Production of nanocellulose with different length from ginkgo seed shells and applications for oil in water Pickering emulsions. Ni Y; Li J; Fan L Int J Biol Macromol; 2020 Apr; 149():617-626. PubMed ID: 32001288 [TBL] [Abstract][Full Text] [Related]
13. Nanocellulose with unique character converted directly from plants without intensive mechanical disintegration. Chen C; Xi P; Zhang S; Zhang L; Sun Y; Yao J; Fang K; Jiang Y Carbohydr Polym; 2022 Oct; 293():119730. PubMed ID: 35798426 [TBL] [Abstract][Full Text] [Related]
14. Redispersible Pickering emulsion powder stabilized by nanocrystalline cellulose combining with cellulosic derivatives. Xie J; Luo Y; Chen Y; Liu Y; Ma Y; Zheng Q; Yue P; Yang M Carbohydr Polym; 2019 Jun; 213():128-137. PubMed ID: 30879652 [TBL] [Abstract][Full Text] [Related]
15. Revalorization of selected municipal solid wastes as new precursors of "green" nanocellulose via a novel one-pot isolation system: A source perspective. Chen YW; Lee HV Int J Biol Macromol; 2018 Feb; 107(Pt A):78-92. PubMed ID: 28860064 [TBL] [Abstract][Full Text] [Related]
16. Redispersion of dried plant nanocellulose: A review. Xu Y; Xu Y; Chen H; Gao M; Yue X; Ni Y Carbohydr Polym; 2022 Oct; 294():119830. PubMed ID: 35868740 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of highly transparent hydrophobic nanocellulose film using corn husks as main material. Chen Q; Xiong J; Chen G; Tan T Int J Biol Macromol; 2020 May; 158():781-789. PubMed ID: 32371132 [TBL] [Abstract][Full Text] [Related]
18. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Reddy JP; Rhim JW Carbohydr Polym; 2014 Sep; 110():480-8. PubMed ID: 24906782 [TBL] [Abstract][Full Text] [Related]
19. Ultrathin Freestanding Nanocellulose Film Prepared from TEMPO-Mediated Oxidation and Homogenized Hydrogel. Zhou T; Choi HW; Jabbour G ACS Omega; 2024 May; 9(20):21798-21804. PubMed ID: 38799327 [TBL] [Abstract][Full Text] [Related]
20. Screening of Nanocellulose from Different Biomass Resources and Its Integration for Hydrophobic Transparent Nanopaper. Qi Y; Zhang H; Xu D; He Z; Pan X; Gui S; Dai X; Fan J; Dong X; Li Y Molecules; 2020 Jan; 25(1):. PubMed ID: 31935878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]