These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36184129)

  • 1. Mechanical properties of toughened windmill palm fibre with different chemical compositions.
    Chen C; Tan J; Wang X
    Carbohydr Polym; 2022 Dec; 297():119996. PubMed ID: 36184129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and thermal properties of cellulose nanofibrils extracted from alkali-ultrasound treated windmill palm fibers.
    Chen C; Huang D; Yang Q; Wang G; Wang X
    Int J Biol Macromol; 2023 Dec; 253(Pt 2):126645. PubMed ID: 37659487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization on chemical and mechanical properties of silane treated fish tail palm fibres.
    Sabarinathan P; Rajkumar K; Annamalai VE; Vishal K
    Int J Biol Macromol; 2020 Nov; 163():2457-2464. PubMed ID: 32980415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model.
    Roy A; Chakraborty S; Kundu SP; Basak RK; Majumder SB; Adhikari B
    Bioresour Technol; 2012 Mar; 107():222-8. PubMed ID: 22209134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of Sodium Acetate Treatment on
    Sheeba KRJ; Priya RK; Arunachalam KP; Avudaiappan S; Maureira-Carsalade N; Roco-Videla Á
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvements in thermal and mechanical properties of composites based on thermoplastic starch and Kraft Lignin.
    de S M de Freitas A; Rodrigues JS; Maciel CC; Pires AAF; Lemes AP; Ferreira M; Botaro VR
    Int J Biol Macromol; 2021 Aug; 184():863-873. PubMed ID: 34181999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Biodegradation on the Structure and Properties of Windmill Palm (Trachycarpus fortunei) Fibers Using Different Chemical Treatments.
    Chen C; Yin W; Chen G; Sun G; Wang G
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of mechanical and thermal properties of oil palm empty fruit bunch fiber poly(butylene adipate-co-terephtalate) biocomposites by matrix esterification using succinic anhydride.
    Siyamak S; Ibrahim NA; Abdolmohammadi S; Yunus WM; Rahman MZ
    Molecules; 2012 Feb; 17(2):1969-91. PubMed ID: 22343368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the hydrophobic and acoustic properties of bio windmill palm materials.
    Chen C; Wang Z; Zhang Y; Bi M; Nie K; Wang G
    Sci Rep; 2018 Sep; 8(1):13419. PubMed ID: 30194391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances of thermal properties of sugar palm lignocellulosic fibre reinforced polymer composites.
    Asyraf MRM; Ishak MR; Norrrahim MNF; Nurazzi NM; Shazleen SS; Ilyas RA; Rafidah M; Razman MR
    Int J Biol Macromol; 2021 Dec; 193(Pt B):1587-1599. PubMed ID: 34740691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of molecular and supramolecular assemblies of cellulose and lignin of lignocellulosic materials by spectroscopy and thermal analysis.
    Ufodike CO; Eze VO; Ahmed MF; Oluwalowo A; Park JG; Liang Z; Wang H
    Int J Biol Macromol; 2020 Mar; 146():916-921. PubMed ID: 31726119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata).
    Ilyas RA; Sapuan SM; Ishak MR
    Carbohydr Polym; 2018 Feb; 181():1038-1051. PubMed ID: 29253930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction and Characterization of Natural Cellulosic Fiber from
    Diyana ZN; Jumaidin R; Selamat MZ; Alamjuri RH; Md Yusof FA
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883674
    [No Abstract]   [Full Text] [Related]  

  • 14. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites.
    Fiore V; Scalici T; Valenza A
    Carbohydr Polym; 2014 Jun; 106():77-83. PubMed ID: 24721053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of ligno-cellulosic fiber extracted from Atriplex halimus L. plant.
    Belouadah Z; Toubal L; Belhaneche-Bensemra N; Ati A
    Int J Biol Macromol; 2021 Jan; 168():806-815. PubMed ID: 33242548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ag immobilized lignin-based PU coating: A promising candidate to promote the mechanical properties, thermal stability, and antibacterial property of paper packaging.
    Xie H; Zhang H; Liu X; Tian S; Liu Y; Fu S
    Int J Biol Macromol; 2021 Oct; 189():690-697. PubMed ID: 34464638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing the alkali treatment of cellulosic Himalayan nettle fibre for reinforcement in polymer composites.
    Mudoi MP; Sinha S; Parthasarthy V
    Carbohydr Polym; 2022 Nov; 296():119937. PubMed ID: 36087986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromechanical modelling of oil palm empty fruit bunch fibres containing silica bodies.
    Omar FN; Hanipah SH; Xiang LY; Mohammed MAP; Baharuddin AS; Abdullah J
    J Mech Behav Biomed Mater; 2016 Sep; 62():106-118. PubMed ID: 27183430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing mechanical properties of chitosan films via modification with vanillin.
    Zhang ZH; Han Z; Zeng XA; Xiong XY; Liu YJ
    Int J Biol Macromol; 2015 Nov; 81():638-43. PubMed ID: 26314906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Characterization of Biobased Lignin-Co-Polyester/Amide Thermoplastics.
    Young EL; McDonald AG
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33922098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.