BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36184131)

  • 21. Functionalized polymeric nanogels with pH-sensitive benzoic-imine cross-linkages designed as vehicles for indocyanine green delivery.
    Liao SC; Ting CW; Chiang WH
    J Colloid Interface Sci; 2020 Mar; 561():11-22. PubMed ID: 31812857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential of self-organizing nanogel with acetylated chondroitin sulfate as an anti-cancer drug carrier.
    Park W; Park SJ; Na K
    Colloids Surf B Biointerfaces; 2010 Sep; 79(2):501-8. PubMed ID: 20541919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.
    Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J
    Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physicochemical, pharmaceutical and biological approaches toward designing optimized and efficient hydrophobically modified chitosan-based polymeric micelles as a nanocarrier system for targeted delivery of anticancer drugs.
    Mahmoudzadeh M; Fassihi A; Emami J; Davies NM; Dorkoosh F
    J Drug Target; 2013 Sep; 21(8):693-709. PubMed ID: 23915108
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of adjusting pH and chondroitin sulfate on the formation of curcumin-zein nanoparticles: Synthesis, characterization and morphology.
    Feng S; Sun Y; Wang D; Sun P; Shao P
    Carbohydr Polym; 2020 Dec; 250():116970. PubMed ID: 33049899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chondroitin sulfate-g-poly(ϵ-caprolactone) co-polymer aggregates as potential targeting drug carriers.
    Wang LF; Ni HC; Lin CC
    J Biomater Sci Polym Ed; 2012; 23(14):1821-42. PubMed ID: 21943871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of Stable and Self-Assembling Rapeseed Protein Nanogel for Hydrophobic Curcumin Delivery.
    Wang Z; Zhang RX; Zhang C; Dai C; Ju X; He R
    J Agric Food Chem; 2019 Jan; 67(3):887-894. PubMed ID: 30608682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation, stability and controlled release properties of starch-based micelles for oral delivery of hydrophobic bioactive molecules.
    Zhang Y; Liu K; Chi C; Chen L; Li X
    Int J Biol Macromol; 2024 Mar; 262(Pt 2):130241. PubMed ID: 38367789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermo-responsive release of curcumin from micelles prepared by self-assembly of amphiphilic P(NIPAAm-co-DMAAm)-b-PLLA-b-P(NIPAAm-co-DMAAm) triblock copolymers.
    Hu Y; Darcos V; Monge S; Li S; Zhou Y; Su F
    Int J Pharm; 2014 Dec; 476(1-2):31-40. PubMed ID: 25260217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of amphiphilic block copolymers in an aqueous solution: direct imaging of micelle formation and nanoparticle encapsulation.
    Li C; Tho CC; Galaktionova D; Chen X; Král P; Mirsaidov U
    Nanoscale; 2019 Jan; 11(5):2299-2305. PubMed ID: 30662983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Block copolymer micelles: preparation, characterization and application in drug delivery.
    Gaucher G; Dufresne MH; Sant VP; Kang N; Maysinger D; Leroux JC
    J Control Release; 2005 Dec; 109(1-3):169-88. PubMed ID: 16289422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of amphiphilic poly(L-lactide)-graft-chondroitin sulfate copolymer self-aggregates and its aggregation behavior.
    Lee CT; Huang CP; Lee YD
    Biomacromolecules; 2006 Apr; 7(4):1179-86. PubMed ID: 16602736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tailoring novel soft nano-vesicles 'Flexosomes' for enhanced transdermal drug delivery: Optimization, characterization and comprehensive ex vivo - in vivo evaluation.
    Abdel-Messih HA; Ishak RAH; Geneidi AS; Mansour S
    Int J Pharm; 2019 Apr; 560():101-115. PubMed ID: 30753931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions.
    Cavallaro G; Craparo EF; Sardo C; Lamberti G; Barba AA; Dalmoro A
    Int J Pharm; 2015 Nov; 495(2):719-27. PubMed ID: 26410757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrophobically modified hydroxyethyl starch: synthesis, characterization, and aqueous self-assembly into nano-sized polymeric micelles and vesicles.
    Besheer A; Hause G; Kressler J; Mäder K
    Biomacromolecules; 2007 Feb; 8(2):359-67. PubMed ID: 17256901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micellar nanocarriers: pharmaceutical perspectives.
    Torchilin VP
    Pharm Res; 2007 Jan; 24(1):1-16. PubMed ID: 17109211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Comparison of Fucoidan Conjugated to Paclitaxel and Curcumin for the Dual Delivery of Cancer Therapeutic Agents.
    Phan NH; Ly TT; Pham MN; Luu TD; Vo TV; Tran PHL; Tran TTD
    Anticancer Agents Med Chem; 2018; 18(9):1349-1355. PubMed ID: 29173183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pH-responsive polymeric micelles self-assembled from benzoic-imine-containing alkyl-modified PEGylated chitosan for delivery of amphiphilic drugs.
    Hsu CW; Hsieh MH; Xiao MC; Chou YH; Wang TH; Chiang WH
    Int J Biol Macromol; 2020 Nov; 163():1106-1116. PubMed ID: 32679318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of intelligent drug delivery system based on polysaccharide-derived polymer micelles: A review.
    Xue H; Ju Y; Ye X; Dai M; Tang C; Liu L
    Int J Biol Macromol; 2024 Jan; 254(Pt 3):128048. PubMed ID: 37967605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.