BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36184136)

  • 1. Thermally stable cellulose nanospheres prepared from office waste paper by complete removal of hydrolyzed sulfate groups.
    Lam DN; Thien DVH; Nguyen CN; Nguyen NTT; Van Viet N; Van-Pham DT
    Carbohydr Polym; 2022 Dec; 297():120009. PubMed ID: 36184136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals.
    Jiang F; Esker AR; Roman M
    Langmuir; 2010 Dec; 26(23):17919-25. PubMed ID: 21073156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of cellulose nanowhiskers sulfate esterification levels.
    Gu J; Catchmark JM; Kaiser EQ; Archibald DD
    Carbohydr Polym; 2013 Feb; 92(2):1809-16. PubMed ID: 23399223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose.
    Roman M; Winter WT
    Biomacromolecules; 2004; 5(5):1671-7. PubMed ID: 15360274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of sulfate groups on the adsorption and activity of cellulases on cellulose substrates.
    Jiang F; Kittle JD; Tan X; Esker AR; Roman M
    Langmuir; 2013 Mar; 29(10):3280-91. PubMed ID: 23452241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable self-assembly of cellulose nanospheres through phosphoric acid triggered dissolution-regeneration and degradation.
    Liu B; Li Y; Yuan Y; Zheng B; Liu C; Zhou L; Zhang J
    Int J Biol Macromol; 2023 Jul; 243():125119. PubMed ID: 37263332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of cellulose nanospheres via combining ZnCl
    Liu Q; Chen N; Yin X; Long L; Hou X; Zhao J; Yuan X
    Int J Biol Macromol; 2021 Jun; 181():621-630. PubMed ID: 33798585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of bacterial cellulose nanocrystals: Effect of acid treatments and neutralization.
    Arserim-Uçar DK; Korel F; Liu L; Yam KL
    Food Chem; 2021 Jan; 336():127597. PubMed ID: 32763732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Location of sulfate groups on sulfoacetate derivatives of cellulose.
    Thomas M; Chauvelon G; Lahaye M; Saulnier L
    Carbohydr Res; 2003 Apr; 338(8):761-70. PubMed ID: 12668096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvolytic desulfation of glycosaminoglycuronan sulfates with dimethyl sulfoxide containing water or methanol.
    Nagasawa K; Inoue Y; Kamata T
    Carbohydr Res; 1977 Sep; 58(1):47-55. PubMed ID: 144018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physicochemical Characteristics of Cellulose Nanocrystals Derived from the Residue of Filamentous Microalga Tribonema utriculosum.
    Wang F; Cao Y; Zhu Z; Gao B; Zhang C
    Appl Biochem Biotechnol; 2021 Aug; 193(8):2430-2442. PubMed ID: 33710521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid-crystalline assembly of spherical cellulose nanocrystals.
    Liu B; Cheng L; Yuan Y; Hu J; Zhou L; Zong L; Duan Y; Zhang J
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124738. PubMed ID: 37169056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of bacterial cellulose sulfates using a SO₃/pyridine complex in DMAc/LiCl.
    Qin Z; Ji L; Yin X; Zhu L; Lin Q; Qin J
    Carbohydr Polym; 2014 Jan; 101():947-53. PubMed ID: 24299860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses.
    Prado KS; Spinacé MAS
    Int J Biol Macromol; 2019 Feb; 122():410-416. PubMed ID: 30385342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of cellulose nanocrystals from Cucumis sativus peels.
    Sai Prasanna N; Mitra J
    Carbohydr Polym; 2020 Nov; 247():116706. PubMed ID: 32829834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and Characterization of Cellulose Nanocrystals from Date Palm Waste.
    Raza M; Abu-Jdayil B; Banat F; Al-Marzouqi AH
    ACS Omega; 2022 Jul; 7(29):25366-25379. PubMed ID: 35910104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocrystalline cellulose with various contents of sulfate groups.
    Voronova MI; Surov OV; Zakharov AG
    Carbohydr Polym; 2013 Oct; 98(1):465-9. PubMed ID: 23987369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features.
    Vasconcelos NF; Feitosa JP; da Gama FM; Morais JP; Andrade FK; de Souza Filho MS; Rosa MF
    Carbohydr Polym; 2017 Jan; 155():425-431. PubMed ID: 27702531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H
    Xie H; Zou Z; Du H; Zhang X; Wang X; Yang X; Wang H; Li G; Li L; Si C
    Carbohydr Polym; 2019 Nov; 223():115116. PubMed ID: 31427005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.