These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 36184336)
1. Influence of age-related changes on crack growth trajectories and toughening mechanisms in human dentin. Maghami E; Najafi AR Dent Mater; 2022 Nov; 38(11):1789-1800. PubMed ID: 36184336 [TBL] [Abstract][Full Text] [Related]
2. Fracture micromechanics of human dentin: A microscale numerical model. Maghami E; Pejman R; Najafi AR J Mech Behav Biomed Mater; 2021 Feb; 114():104171. PubMed ID: 33218927 [TBL] [Abstract][Full Text] [Related]
3. The effect of aging on crack-growth resistance and toughening mechanisms in human dentin. Koester KJ; Ager JW; Ritchie RO Biomaterials; 2008 Apr; 29(10):1318-28. PubMed ID: 18164757 [TBL] [Abstract][Full Text] [Related]
4. An analysis of crack growth in dentin at the microstructural scale. An B; Zhang D J Mech Behav Biomed Mater; 2018 May; 81():149-160. PubMed ID: 29522965 [TBL] [Abstract][Full Text] [Related]
5. Effect of dentinal tubules and resin-based endodontic sealers on fracture properties of root dentin. Jainaen A; Palamara JE; Messer HH Dent Mater; 2009 Oct; 25(10):e73-81. PubMed ID: 19616297 [TBL] [Abstract][Full Text] [Related]
6. Aging and the reduction in fracture toughness of human dentin. Nazari A; Bajaj D; Zhang D; Romberg E; Arola D J Mech Behav Biomed Mater; 2009 Oct; 2(5):550-9. PubMed ID: 19627862 [TBL] [Abstract][Full Text] [Related]
7. The importance of microstructural variations on the fracture toughness of human dentin. Ivancik J; Arola DD Biomaterials; 2013 Jan; 34(4):864-74. PubMed ID: 23131531 [TBL] [Abstract][Full Text] [Related]
8. The effect of microcracking in the peritubular dentin on the fracture of dentin. An B; Daniel Wagner H J Biomech; 2017 Dec; 65():125-130. PubMed ID: 29111203 [TBL] [Abstract][Full Text] [Related]
9. Effect of hydration and crack orientation on crack-tip strain, crack opening displacement and crack-tip shielding in elephant dentin. Lu X; Rawson SD; Withers PJ Dent Mater; 2018 Jul; 34(7):1041-1053. PubMed ID: 29692340 [TBL] [Abstract][Full Text] [Related]
10. A Numerical Study of Crack Penetration and Deflection at the Interface Between Peritubular and Intertubular Dentin. Xu M; Xu Z; An B J Biomech Eng; 2024 Dec; 146(12):. PubMed ID: 39167372 [TBL] [Abstract][Full Text] [Related]
11. Fracture behavior of human cortical bone: Role of advanced glycation end-products and microstructural features. Maghami E; Josephson TO; Moore JP; Rezaee T; Freeman TA; Karim L; Najafi AR J Biomech; 2021 Aug; 125():110600. PubMed ID: 34246065 [TBL] [Abstract][Full Text] [Related]
12. Degradation in the fatigue crack growth resistance of human dentin by lactic acid. Orrego S; Xu H; Arola D Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():716-725. PubMed ID: 28183665 [TBL] [Abstract][Full Text] [Related]
13. Bioinspired toughening mechanism: lesson from dentin. An B; Zhang D Bioinspir Biomim; 2015 Jul; 10(4):046010. PubMed ID: 26158322 [TBL] [Abstract][Full Text] [Related]
14. Fatigue crack propagation path across the dentinoenamel junction complex in human teeth. Dong XD; Ruse ND J Biomed Mater Res A; 2003 Jul; 66(1):103-9. PubMed ID: 12833436 [TBL] [Abstract][Full Text] [Related]
15. On the origin of the toughness of mineralized tissue: microcracking or crack bridging? Nalla RK; Kruzic JJ; Ritchie RO Bone; 2004 May; 34(5):790-8. PubMed ID: 15121010 [TBL] [Abstract][Full Text] [Related]
16. Inelastic deformation and microcracking process in human dentin. Eltit F; Ebacher V; Wang R J Struct Biol; 2013 Aug; 183(2):141-8. PubMed ID: 23583703 [TBL] [Abstract][Full Text] [Related]
17. Mechanistic aspects of in vitro fatigue-crack growth in dentin. Kruzic JJ; Nalla RK; Kinney JH; Ritchie RO Biomaterials; 2005 Apr; 26(10):1195-204. PubMed ID: 15451639 [TBL] [Abstract][Full Text] [Related]
18. Contributions of aging to the fatigue crack growth resistance of human dentin. Ivancik J; Majd H; Bajaj D; Romberg E; Arola D Acta Biomater; 2012 Jul; 8(7):2737-46. PubMed ID: 22484693 [TBL] [Abstract][Full Text] [Related]
19. Occluding effect of Nd:YAG laser and different dentin desensitizing agents on human dentinal tubules in vitro: a scanning electron microscopy investigation. Al-Saud LM; Al-Nahedh HN Oper Dent; 2012; 37(4):340-55. PubMed ID: 22313266 [TBL] [Abstract][Full Text] [Related]
20. Fracture behavior of human cortical bone with high glycation content under dynamic loading. Maghami E; Sadighi A; Najafi AR J Mech Behav Biomed Mater; 2024 Jul; 155():106577. PubMed ID: 38759587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]