These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36184570)

  • 21. Advancements of MOFs in the Field of Propane Oxidative Dehydrogenation for Propylene Production.
    Li ST; Ke M; Zhang J; Peng YL; Chen G
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38542849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combining CO
    Gomez E; Kattel S; Yan B; Yao S; Liu P; Chen JG
    Nat Commun; 2018 Apr; 9(1):1398. PubMed ID: 29636456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane.
    Dai Y; Gao X; Wang Q; Wan X; Zhou C; Yang Y
    Chem Soc Rev; 2021 May; 50(9):5590-5630. PubMed ID: 33690780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Smart Design of Non-Noble Catalysts for Sustainable Propane Dehydrogenation.
    Smith LR; Sun Z; Hutchings GJ
    Angew Chem Int Ed Engl; 2024 Dec; 63(51):e202416080. PubMed ID: 39329435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulating Electron Density of Boron-Oxygen Groups in Borate via Metal Electronegativity for Propane Oxidative Dehydrogenation.
    Li P; Yao Y; Chai S; Li Z; Xue F; Wang X
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ferric Single-Site Catalyst Confined in a Zeolite Framework for Propane Dehydrogenation.
    Xu G; Zhang X; Dong Z; Liang W; Xiao T; Chen H; Ma Y; Pan Y; Fu Y
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202305915. PubMed ID: 37696765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal-Site Dispersed Zinc-Chromium Oxide Derived from Chromate-Intercalated Layered Hydroxide for Highly Selective Propane Dehydrogenation.
    Xue L; Pang M; Yuan Z; Zhou D
    Molecules; 2024 Jun; 29(13):. PubMed ID: 38999013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-temperature propane oxidative dehydrogenation over UiO-66 supported vanadia catalysts: Role of support confinement effects.
    Farzaneh A; Moghaddam MS
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):404-416. PubMed ID: 36166967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Situ Formation of Platinum-Carbon Catalysts in Propane Dehydrogenation.
    Nerl HC; Plodinec M; Götsch T; Skorupska K; Schlögl R; Jones TE; Lunkenbein T
    Angew Chem Int Ed Engl; 2024 Jun; 63(24):e202319887. PubMed ID: 38603634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single Vanadium Atoms Anchored on Graphitic Carbon Nitride as a High-Performance Catalyst for Non-oxidative Propane Dehydrogenation.
    Kong N; Fan X; Liu F; Wang L; Lin H; Li Y; Lee ST
    ACS Nano; 2020 May; 14(5):5772-5779. PubMed ID: 32374154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One-pot synthesis of VO
    Wang G; Xu H; Lu K; Ding Z; Bing L
    Turk J Chem; 2020; 44(1):112-124. PubMed ID: 33488147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-evolved BO
    Zhang D; Wang S; Lu X; Zhang C; Feng K; He L; Zhang H; Sun W; Yang D
    iScience; 2023 Nov; 26(11):108135. PubMed ID: 37876808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods.
    Qi W; Yan P; Su DS
    Acc Chem Res; 2018 Mar; 51(3):640-648. PubMed ID: 29446621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-Oxidative Propane Dehydrogenation on CrO
    Golubina EV; Kaplin IY; Gorodnova AV; Lokteva ES; Isaikina OY; Maslakov KI
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photothermal oxidative dehydrogenation of propane to propylene over Cu/BN catalysts.
    Sun S; Zhao M; Liu H; Li D; Lei Y
    Front Chem; 2024; 12():1439185. PubMed ID: 39091277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis and process evaluation of metal dopant (Zr, Cr)-promoted Ga-modified ZSM-5 for the oxidative dehydrogenation of propane in the presence and absence of CO
    Jawad A; Ahmed S
    RSC Adv; 2023 Apr; 13(16):11081-11095. PubMed ID: 37033432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boosting Propane Dehydrogenation by the Regioselective Distribution of Subnanometric CoO Clusters in MFI Zeolite Nanosheets.
    Lv X; Yang M; Song S; Xia M; Li J; Wei Y; Xu C; Song W; Liu J
    ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36898088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Propane dehydrogenation catalysis of group IIIB and IVB metal hydrides.
    Hu X; Huang M; Kinjyo T; Mine S; Toyao T; Hinuma Y; Kitano M; Sato T; Namiki N; Shimizu KI; Maeno Z
    RSC Adv; 2024 Jul; 14(32):23459-23465. PubMed ID: 39055265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase-Transition-Induced Surface Reconstruction of Rh
    Yin P; Shi J; Zuo M; Zhang W; Peng B; Jiang B; Fu XZ; Liang HW
    J Phys Chem Lett; 2024 Apr; 15(16):4501-4507. PubMed ID: 38634716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.