These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Selective Chemical Vapor Deposition Growth of Cubic FeGe Nanowires That Support Stabilized Magnetic Skyrmions. Stolt MJ; Li ZA; Phillips B; Song D; Mathur N; Dunin-Borkowski RE; Jin S Nano Lett; 2017 Jan; 17(1):508-514. PubMed ID: 27936792 [TBL] [Abstract][Full Text] [Related]
3. Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks. Zhao X; Jin C; Wang C; Du H; Zang J; Tian M; Che R; Zhang Y Proc Natl Acad Sci U S A; 2016 May; 113(18):4918-23. PubMed ID: 27051067 [TBL] [Abstract][Full Text] [Related]
4. Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-High Temperature Stability in a Geometrically Confined Nanostripe. Hou Z; Zhang Q; Xu G; Gong C; Ding B; Wang Y; Li H; Liu E; Xu F; Zhang H; Yao Y; Wu G; Zhang XX; Wang W Nano Lett; 2018 Feb; 18(2):1274-1279. PubMed ID: 29299928 [TBL] [Abstract][Full Text] [Related]
5. Edge-mediated skyrmion chain and its collective dynamics in a confined geometry. Du H; Che R; Kong L; Zhao X; Jin C; Wang C; Yang J; Ning W; Li R; Jin C; Chen X; Zang J; Zhang Y; Tian M Nat Commun; 2015 Oct; 6():8504. PubMed ID: 26446692 [TBL] [Abstract][Full Text] [Related]
6. Magnetic Direct-Write Skyrmion Nanolithography. Ognev AV; Kolesnikov AG; Kim YJ; Cha IH; Sadovnikov AV; Nikitov SA; Soldatov IV; Talapatra A; Mohanty J; Mruczkiewicz M; Ge Y; Kerber N; Dittrich F; Virnau P; Kläui M; Kim YK; Samardak AS ACS Nano; 2020 Nov; 14(11):14960-14970. PubMed ID: 33152236 [TBL] [Abstract][Full Text] [Related]
7. Stable Magnetic Skyrmion States at Room Temperature Confined to Corrals of Artificial Surface Pits Fabricated by a Focused Electron Beam. Matsumoto T; So YG; Kohno Y; Ikuhara Y; Shibata N Nano Lett; 2018 Feb; 18(2):754-762. PubMed ID: 29360375 [TBL] [Abstract][Full Text] [Related]
8. Relaxation Dynamics of Zero-Field Skyrmions over a Wide Temperature Range. Peng L; Zhang Y; Ke L; Kim TH; Zheng Q; Yan J; Zhang XG; Gao Y; Wang S; Cai J; Shen B; McQueeney RJ; Kaminski A; Kramer MJ; Zhou L Nano Lett; 2018 Dec; 18(12):7777-7783. PubMed ID: 30499678 [TBL] [Abstract][Full Text] [Related]
9. An Improved Racetrack Structure for Transporting a Skyrmion. Lai P; Zhao GP; Tang H; Ran N; Wu SQ; Xia J; Zhang X; Zhou Y Sci Rep; 2017 Mar; 7():45330. PubMed ID: 28358009 [TBL] [Abstract][Full Text] [Related]
10. Controlled Individual Skyrmion Nucleation at Artificial Defects Formed by Ion Irradiation. Fallon K; Hughes S; Zeissler K; Legrand W; Ajejas F; Maccariello D; McFadzean S; Smith W; McGrouther D; Collin S; Reyren N; Cros V; Marrows CH; McVitie S Small; 2020 Apr; 16(13):e1907450. PubMed ID: 32141234 [TBL] [Abstract][Full Text] [Related]
11. Filming the formation and fluctuation of skyrmion domains by cryo-Lorentz transmission electron microscopy. Rajeswari J; Huang P; Mancini GF; Murooka Y; Latychevskaia T; McGrouther D; Cantoni M; Baldini E; White JS; Magrez A; Giamarchi T; Rønnow HM; Carbone F Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14212-7. PubMed ID: 26578765 [TBL] [Abstract][Full Text] [Related]
12. Skyrmion-skyrmion interaction induced by itinerant electrons in a ferromagnetic strip. Iroulart E; Rosales HD J Phys Condens Matter; 2022 Dec; 35(4):. PubMed ID: 36541515 [TBL] [Abstract][Full Text] [Related]
14. Magnetic Skyrmion Formation at Lattice Defects and Grain Boundaries Studied by Quantitative Off-Axis Electron Holography. Li ZA; Zheng F; Tavabi AH; Caron J; Jin C; Du H; Kovács A; Tian M; Farle M; Dunin-Borkowski RE Nano Lett; 2017 Mar; 17(3):1395-1401. PubMed ID: 28125235 [TBL] [Abstract][Full Text] [Related]
15. High field magnetic transport measurements of FeGe thin plates. Li L; Wang W; Xu X; Wang N; Wang Z; Song D; Qu Z; Du H J Phys Condens Matter; 2023 Aug; 35(44):. PubMed ID: 37506705 [TBL] [Abstract][Full Text] [Related]
16. Electron Beam Lithography of Magnetic Skyrmions. Guang Y; Peng Y; Yan Z; Liu Y; Zhang J; Zeng X; Zhang S; Zhang S; Burn DM; Jaouen N; Wei J; Xu H; Feng J; Fang C; van der Laan G; Hesjedal T; Cui B; Zhang X; Yu G; Han X Adv Mater; 2020 Oct; 32(39):e2003003. PubMed ID: 32812294 [TBL] [Abstract][Full Text] [Related]
17. Manipulation of Skyrmion Motion Dynamics for Logical Device Application Mediated by Inhomogeneous Magnetic Anisotropy. Lin JQ; Chen JP; Tan ZY; Chen Y; Chen ZF; Li WA; Gao XS; Liu JM Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055295 [TBL] [Abstract][Full Text] [Related]
18. Thermal Stability of Skyrmion Tubes in Nanostructured Cuboids. Jiang J; Tang J; Bai T; Wu Y; Qin J; Xia W; Chen R; Yan A; Wang S; Tian M; Du H Nano Lett; 2024 Feb; 24(5):1587-1593. PubMed ID: 38259044 [TBL] [Abstract][Full Text] [Related]
19. Helium Ions Put Magnetic Skyrmions on the Track. Juge R; Bairagi K; Rana KG; Vogel J; Sall M; Mailly D; Pham VT; Zhang Q; Sisodia N; Foerster M; Aballe L; Belmeguenai M; Roussigné Y; Auffret S; Buda-Prejbeanu LD; Gaudin G; Ravelosona D; Boulle O Nano Lett; 2021 Apr; 21(7):2989-2996. PubMed ID: 33740371 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Stability of the Magnetic Skyrmion Lattice Phase under a Tilted Magnetic Field in a Two-Dimensional Chiral Magnet. Wang C; Du H; Zhao X; Jin C; Tian M; Zhang Y; Che R Nano Lett; 2017 May; 17(5):2921-2927. PubMed ID: 28350960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]