These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Wearable Biofeedback Improves Human-Robot Compliance during Ankle-Foot Exoskeleton-Assisted Gait Training: A Pre-Post Controlled Study in Healthy Participants. Pinheiro C; Figueiredo J; Magalhães N; Santos CP Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080845 [TBL] [Abstract][Full Text] [Related]
3. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects. Miao Q; Zhang M; Wang C; Li H J Healthc Eng; 2018; 2018():1534247. PubMed ID: 29736230 [TBL] [Abstract][Full Text] [Related]
4. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review. Fisahn C; Aach M; Jansen O; Moisi M; Mayadev A; Pagarigan KT; Dettori JR; Schildhauer TA Global Spine J; 2016 Dec; 6(8):822-841. PubMed ID: 27853668 [No Abstract] [Full Text] [Related]
5. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation. Ahmed T; Islam MR; Brahmi B; Rahman MH Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155 [TBL] [Abstract][Full Text] [Related]
6. Polymer Optical Fiber-Based Integrated Instrumentation in a Robot-Assisted Rehabilitation Smart Environment: A Proof of Concept. Leal-Junior A; Avellar L; Jaimes J; Díaz C; Dos Santos W; Siqueira AAG; Pontes MJ; Marques C; Frizera A Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32512903 [TBL] [Abstract][Full Text] [Related]
7. Assistive Control System for Upper Limb Rehabilitation Robot. Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055 [TBL] [Abstract][Full Text] [Related]
8. Robot-assisted training using Hybrid Assistive Limb® for cerebral palsy. Matsuda M; Iwasaki N; Mataki Y; Mutsuzaki H; Yoshikawa K; Takahashi K; Enomoto K; Sano K; Kubota A; Nakayama T; Nakayama J; Ohguro H; Mizukami M; Tomita K Brain Dev; 2018 Sep; 40(8):642-648. PubMed ID: 29773349 [TBL] [Abstract][Full Text] [Related]
9. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury. Sale P; Franceschini M; Waldner A; Hesse S Eur J Phys Rehabil Med; 2012 Mar; 48(1):111-21. PubMed ID: 22543557 [TBL] [Abstract][Full Text] [Related]
11. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints. Zhang F; Fu Y; Zhang Q; Wang S Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062 [TBL] [Abstract][Full Text] [Related]
12. Walking ability following hybrid assistive limb treatment for a patient with chronic myelopathy after surgery for cervical ossification of the posterior longitudinal ligament. Kubota S; Abe T; Kadone H; Fujii K; Shimizu Y; Marushima A; Ueno T; Kawamoto H; Hada Y; Matsumura A; Sankai Y; Yamazaki M J Spinal Cord Med; 2019 Jan; 42(1):128-136. PubMed ID: 28424026 [TBL] [Abstract][Full Text] [Related]
13. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods. Hussain F; Goecke R; Mohammadian M Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562 [TBL] [Abstract][Full Text] [Related]
14. Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications. Yap HK; Lim JH; Nasrallah F; Cho Hong Goh J; Yeow CH J Med Eng Technol; 2016; 40(4):199-209. PubMed ID: 27007297 [TBL] [Abstract][Full Text] [Related]
15. Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study. Sanz-Morère CB; Martini E; Meoni B; Arnetoli G; Giffone A; Doronzio S; Fanciullacci C; Parri A; Conti R; Giovacchini F; Friðriksson Þ; Romo D; Crea S; Molino-Lova R; Vitiello N J Neuroeng Rehabil; 2021 Jul; 18(1):111. PubMed ID: 34217307 [TBL] [Abstract][Full Text] [Related]
17. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study. Park JH; Park G; Kim HY; Lee JY; Ham Y; Hwang D; Kwon S; Shin JH J Neuroeng Rehabil; 2020 Oct; 17(1):137. PubMed ID: 33076952 [TBL] [Abstract][Full Text] [Related]
18. The Effects of EMG-Based Classification and Robot Control Method on User's Neuromuscular Effort during Real-Time Assistive Hand Exoskeleton Operation. Esmatloo P; Deshpande AD Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7515. PubMed ID: 34892831 [TBL] [Abstract][Full Text] [Related]
19. Wearable Robots: An Original Mechatronic Design of a Hand Exoskeleton for Assistive and Rehabilitative Purposes. Secciani N; Brogi C; Pagliai M; Buonamici F; Gerli F; Vannetti F; Bianchini M; Volpe Y; Ridolfi A Front Neurorobot; 2021; 15():750385. PubMed ID: 34744679 [TBL] [Abstract][Full Text] [Related]
20. A Systematic Review on Existing Measures for the Subjective Assessment of Rehabilitation and Assistive Robot Devices. Koumpouros Y J Healthc Eng; 2016; 2016():. PubMed ID: 27196802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]