These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 36186028)
21. Volatile organic compounds from Paenibacillus polymyxa KM2501-1 control Meloidogyne incognita by multiple strategies. Cheng W; Yang J; Nie Q; Huang D; Yu C; Zheng L; Cai M; Thomashow LS; Weller DM; Yu Z; Zhang J Sci Rep; 2017 Nov; 7(1):16213. PubMed ID: 29176679 [TBL] [Abstract][Full Text] [Related]
22. Identification and Functional Analysis of Tomato MicroRNAs in the Biocontrol Bacterium Yang F; Ding L; Zhao D; Fan H; Zhu X; Wang Y; Liu X; Duan Y; Chen L Phytopathology; 2022 Nov; 112(11):2372-2382. PubMed ID: 35668060 [TBL] [Abstract][Full Text] [Related]
23. Identification for the First Time of Cyclo(d-Pro-l-Leu) Produced by Bacillus amyloliquefaciens Y1 as a Nematocide for Control of Meloidogyne incognita. Jamal Q; Cho JY; Moon JH; Munir S; Anees M; Kim KY Molecules; 2017 Oct; 22(11):. PubMed ID: 29077011 [TBL] [Abstract][Full Text] [Related]
24. Potential of vermicompost extract in enhancing the biomass and bioactive components along with mitigation of Meloidogyne incognita-induced stress in tomato. Tikoria R; Kaur A; Ohri P Environ Sci Pollut Res Int; 2022 Aug; 29(37):56023-56036. PubMed ID: 35332451 [TBL] [Abstract][Full Text] [Related]
25. Resistance induction and nematicidal activity of certain monoterpenes against tomato root-knot caused by Elsharkawy MM; Al-Askar AA; Behiry SI; Abdelkhalek A; Saleem MH; Kamran M; Derbalah A Front Plant Sci; 2022; 13():982414. PubMed ID: 36204064 [TBL] [Abstract][Full Text] [Related]
26. Bacterial strains integrated with surfactin molecules of Bacillus subtilis MTCC441 enrich nematocidal activity against Meloidogyne incognita. Nadeem H; Niazi P; Asif M; Kaskavalci G; Ahmad F Plant Biol (Stuttg); 2021 Nov; 23(6):1027-1036. PubMed ID: 34263982 [TBL] [Abstract][Full Text] [Related]
27. Grafting and Paladin Pic-21 for Nematode and Weed Management in Vegetable Production. Kokalis-Burelle N; Butler DM; Hong JC; Bausher MG; McCollum G; Rosskopf EN J Nematol; 2016 Dec; 48(4):231-240. PubMed ID: 28154429 [TBL] [Abstract][Full Text] [Related]
28. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. Adam M; Heuer H; Hallmann J PLoS One; 2014; 9(2):e90402. PubMed ID: 24587352 [TBL] [Abstract][Full Text] [Related]
29. Commercial Formulates of Pocurull M; Fullana AM; Ferro M; Valero P; Escudero N; Saus E; Gabaldón T; Sorribas FJ Front Microbiol; 2019; 10():3042. PubMed ID: 32076417 [No Abstract] [Full Text] [Related]
30. Evaluation of in vitro and in vivo nematicidal potential of a multifunctional streptomycete, Streptomyces hydrogenans strain DH16 against Meloidogyne incognita. Kaur T; Jasrotia S; Ohri P; Manhas RK Microbiol Res; 2016 Nov; 192():247-252. PubMed ID: 27664743 [TBL] [Abstract][Full Text] [Related]
31. Nemato-toxic analysis of several chopped plant leaves against Meloidogyne incognita affecting tomato In vitro and In pots. Ikram M; Shariq M; Khan F; Khan A; Fatima S; Siddiqui MA Bioinformation; 2022; 18(4):354-363. PubMed ID: 36909698 [TBL] [Abstract][Full Text] [Related]
33. Purpureocillium lilacinum for plant growth promotion and biocontrol against root-knot nematodes infecting eggplant. Khan M; Tanaka K PLoS One; 2023; 18(3):e0283550. PubMed ID: 36961807 [TBL] [Abstract][Full Text] [Related]
34. Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery. Terefe M; Tefera T; Sakhuja PK J Invertebr Pathol; 2009 Feb; 100(2):94-9. PubMed ID: 19041655 [TBL] [Abstract][Full Text] [Related]
35. Biocontrol of the root-knot nematode Meloidogyne incognita by a nematicidal bacterium Pseudomonas simiae MB751 with cyclic dipeptide. Sun X; Zhang R; Ding M; Liu Y; Li L Pest Manag Sci; 2021 Oct; 77(10):4365-4374. PubMed ID: 33963810 [TBL] [Abstract][Full Text] [Related]
36. Impact of phenolic compounds on Meloidogyne incognita in vitro and in tomato plants. Oliveira DF; Costa VA; Terra WC; Campos VP; Paula PM; Martins SJ Exp Parasitol; 2019 Apr; 199():17-23. PubMed ID: 30790574 [TBL] [Abstract][Full Text] [Related]
37. Identification of Key Root Volatiles Signaling Preference of Tomato over Spinach by the Root Knot Nematode Meloidogyne incognita. Murungi LK; Kirwa H; Coyne D; Teal PEA; Beck JJ; Torto B J Agric Food Chem; 2018 Jul; 66(28):7328-7336. PubMed ID: 29938509 [TBL] [Abstract][Full Text] [Related]
38. Phanerochaete chrysosporium strain B-22, a nematophagous fungus parasitizing Meloidogyne incognita. Du B; Xu Y; Dong H; Li Y; Wang J PLoS One; 2020; 15(1):e0216688. PubMed ID: 31931510 [TBL] [Abstract][Full Text] [Related]
39. Effect of Ammonium Ions on Egg Hatching and Second-Stage Juveniles of Meloidogyne incognita in Axenic Tomato Root Culture. Sudirman ; Webster JM J Nematol; 1995 Sep; 27(3):346-52. PubMed ID: 19277298 [TBL] [Abstract][Full Text] [Related]
40. Pasteuria penetrans for Control of Meloidogyne incognita on Tomato and Cucumber, and M. arenaria on Snapdragon. Kokalis-Burelle N J Nematol; 2015 Sep; 47(3):207-13. PubMed ID: 26527842 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]