BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 36186053)

  • 1. Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation.
    Kumar S; Shah SH; Vimala Y; Jatav HS; Ahmad P; Chen Y; Siddique KHM
    Front Plant Sci; 2022; 13():972856. PubMed ID: 36186053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melatonin interaction with abscisic acid in the regulation of abiotic stress in Solanaceae family plants.
    Ali M; Pan Y; Liu H; Cheng Z
    Front Plant Sci; 2023; 14():1271137. PubMed ID: 37767290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging role of osmoprotectant glycine betaine to mitigate heavy metals toxicity in plants: a systematic review.
    Sharma J; Kumar S; Singh P; Kumar V; Verma S; Khyalia P; Sharma A
    Biol Futur; 2024 Jun; 75(2):159-176. PubMed ID: 38183566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones.
    Singh A; Roychoudhury A
    Plant Cell Rep; 2023 Jun; 42(6):961-974. PubMed ID: 37079058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress.
    Nazir F; Fariduddin Q; Khan TA
    Chemosphere; 2020 Aug; 252():126486. PubMed ID: 32234629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Insights into Exogenous Phytohormones: Central Regulators in the Modulation of Physiological, Biochemical, and Molecular Responses in Rice under Metal(loid) Stress.
    Bilal S; Saad Jan S; Shahid M; Asaf S; Khan AL; Lubna ; Al-Rawahi A; Lee IJ; Al-Harrasi A
    Metabolites; 2023 Sep; 13(10):. PubMed ID: 37887361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of abscisic acid in silicon-mediated enhancement of copper stress tolerance in Artemisia annua.
    Zehra A; Wani KI; Choudhary S; Naeem M; Khan MMA; Aftab T
    Plant Physiol Biochem; 2023 Feb; 195():37-46. PubMed ID: 36599274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health.
    Rai PK; Sonne C; Kim KH
    Sci Total Environ; 2023 May; 874():162327. PubMed ID: 36813200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory hubs and strategies for improving heavy metal tolerance in plants: Chemical messengers, omics and genetic engineering.
    Khan MIR; Chopra P; Chhillar H; Ahanger MA; Hussain SJ; Maheshwari C
    Plant Physiol Biochem; 2021 Jul; 164():260-278. PubMed ID: 34020167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abscisic-Acid-Regulated Responses to Alleviate Cadmium Toxicity in Plants.
    Zhao Y; Wang J; Huang W; Zhang D; Wu J; Li B; Li M; Liu L; Yan M
    Plants (Basel); 2023 Feb; 12(5):. PubMed ID: 36903884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Synergy of Arbuscular Mycorrhizal Fungi and Exogenous Abscisic Acid Benefits
    Lou X; Zhang X; Zhang Y; Tang M
    J Fungi (Basel); 2021 Aug; 7(8):. PubMed ID: 34436210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytohormones: Key players in the modulation of heavy metal stress tolerance in plants.
    Saini S; Kaur N; Pati PK
    Ecotoxicol Environ Saf; 2021 Oct; 223():112578. PubMed ID: 34352573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Seed Germination and Abiotic Stresses by Gibberellins and Abscisic Acid.
    Vishal B; Kumar PP
    Front Plant Sci; 2018; 9():838. PubMed ID: 29973944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 9-
    Huang Y; Guo Y; Liu Y; Zhang F; Wang Z; Wang H; Wang F; Li D; Mao D; Luan S; Liang M; Chen L
    Front Plant Sci; 2018; 9():162. PubMed ID: 29559982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abscisic acid dynamics, signaling, and functions in plants.
    Chen K; Li GJ; Bressan RA; Song CP; Zhu JK; Zhao Y
    J Integr Plant Biol; 2020 Jan; 62(1):25-54. PubMed ID: 31850654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress.
    León J; Castillo MC; Coego A; Lozano-Juste J; Mir R
    J Exp Bot; 2014 Mar; 65(4):907-21. PubMed ID: 24371253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress.
    Thao NP; Khan MI; Thu NB; Hoang XL; Asgher M; Khan NA; Tran LS
    Plant Physiol; 2015 Sep; 169(1):73-84. PubMed ID: 26246451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melatonin Modulates Plant Tolerance to Heavy Metal Stress: Morphological Responses to Molecular Mechanisms.
    Hoque MN; Tahjib-Ul-Arif M; Hannan A; Sultana N; Akhter S; Hasanuzzaman M; Akter F; Hossain MS; Sayed MA; Hasan MT; Skalicky M; Li X; Brestič M
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering the melatonin-mediated response and signalling in the regulation of heavy metal stress in plants.
    Altaf MA; Sharma N; Srivastava D; Mandal S; Adavi S; Jena R; Bairwa RK; Gopalakrishnan AV; Kumar A; Dey A; Lal MK; Tiwari RK; Kumar R; Ahmed P
    Planta; 2023 May; 257(6):115. PubMed ID: 37169910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exogenous abscisic acid fine-tunes heavy metal accumulation and plant's antioxidant defence mechanism to optimize crop performance and secondary metabolite production in Trigonella foenum-graecum L. under nickel stress.
    Parwez R; Aftab T; Khan MMA; Naeem M
    Plant Sci; 2023 Jul; 332():111703. PubMed ID: 37031743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.