These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36186674)

  • 1. System dynamics-based assessment of novel transport options adoption in India.
    Saraf N; Shastri Y
    Clean Technol Environ Policy; 2023; 25(3):799-823. PubMed ID: 36186674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US.
    Challa R; Kamath D; Anctil A
    J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.
    Luk JM; Saville BA; MacLean HL
    Environ Sci Technol; 2015 Apr; 49(8):5151-60. PubMed ID: 25825338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Life-Cycle Comparison of Alternative Automobile Fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-1779. PubMed ID: 28076232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.
    Elgowainy A; Han J; Ward J; Joseck F; Gohlke D; Lindauer A; Ramsden T; Biddy M; Alexander M; Barnhart S; Sutherland I; Verduzco L; Wallington TJ
    Environ Sci Technol; 2018 Feb; 52(4):2392-2399. PubMed ID: 29298387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives.
    Delucchi MA; Yang C; Burke AF; Ogden JM; Kurani K; Kessler J; Sperling D
    Philos Trans A Math Phys Eng Sci; 2014 Jan; 372(2006):20120325. PubMed ID: 24298079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to reduce the greenhouse gas emissions and air pollution caused by light and heavy duty vehicles with battery-electric, fuel cell-electric and catenary trucks.
    Breuer JL; Samsun RC; Stolten D; Peters R
    Environ Int; 2021 Jul; 152():106474. PubMed ID: 33711760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benefits of near-zero freight: The air quality and health impacts of low-NO
    Mac Kinnon M; Zhu S; Cervantes A; Dabdub D; Samuelsen GS
    J Air Waste Manag Assoc; 2021 Nov; 71(11):1428-1444. PubMed ID: 34287106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-world fuel use and gaseous emission rates for flex fuel vehicles operated on E85 versus gasoline.
    Delavarrafiee M; Frey HC
    J Air Waste Manag Assoc; 2018 Mar; 68(3):235-254. PubMed ID: 29215964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Private versus Shared, Automated Electric Vehicles for U.S. Personal Mobility: Energy Use, Greenhouse Gas Emissions, Grid Integration, and Cost Impacts.
    Sheppard CJR; Jenn AT; Greenblatt JB; Bauer GS; Gerke BF
    Environ Sci Technol; 2021 Mar; 55(5):3229-3239. PubMed ID: 33566604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the emission factors of air pollutants from gasoline, CNG, LPG and diesel fueled vehicles at idle speed.
    Aosaf MR; Wang Y; Du K
    Environ Pollut; 2022 Jul; 305():119296. PubMed ID: 35427677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Addressing the range anxiety of battery electric vehicles with charging en route.
    Chakraborty P; Parker R; Hoque T; Cruz J; Du L; Wang S; Bhunia S
    Sci Rep; 2022 Apr; 12(1):5588. PubMed ID: 35379831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.
    Wu M; Wu Y; Wang M
    Biotechnol Prog; 2006; 22(4):1012-24. PubMed ID: 16889378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Economic and Climate Benefits of Electric Vehicles in China, the United States, and Germany.
    He X; Zhang S; Wu Y; Wallington TJ; Lu X; Tamor MA; McElroy MB; Zhang KM; Nielsen CP; Hao J
    Environ Sci Technol; 2019 Sep; 53(18):11013-11022. PubMed ID: 31415163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global electric vehicle adoption: implementation and policy implications for India.
    Das PK; Bhat MY
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40612-40622. PubMed ID: 35083674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling of life cycle cost of conventional and alternative vehicles.
    Furch J; Konečný V; Krobot Z
    Sci Rep; 2022 Jun; 12(1):10661. PubMed ID: 35739239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-world NOx emissions from heavy-duty diesel, natural gas, and diesel hybrid electric vehicles of different vocations on California roadways.
    McCaffery C; Zhu H; Tang T; Li C; Karavalakis G; Cao S; Oshinuga A; Burnette A; Johnson KC; Durbin TD
    Sci Total Environ; 2021 Aug; 784():147224. PubMed ID: 33905931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate and health relevant emissions from in-use Indian three-wheelers fueled by natural gas and gasoline.
    Reynolds CC; Grieshop AP; Kandlikar M
    Environ Sci Technol; 2011 Mar; 45(6):2406-12. PubMed ID: 21322628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinated EV adoption: double-digit reductions in emissions and fuel use for $40/vehicle-year.
    Choi DG; Kreikebaum F; Thomas VM; Divan D
    Environ Sci Technol; 2013 Sep; 47(18):10703-7. PubMed ID: 23875888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.