BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 36186847)

  • 1. A tannic acid doped hydrogel with small extracellular vesicles derived from mesenchymal stem cells promotes spinal cord repair by regulating reactive oxygen species microenvironment.
    Liu Z; Guo S; Dong L; Wu P; Li K; Li X; Li X; Qian H; Fu Q
    Mater Today Bio; 2022 Dec; 16():100425. PubMed ID: 36186847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effects of gelatin methacrylate anhydride hydrogel loaded with small extracellular vesicles derived from human umbilical cord mesenchymal stem cells in the treatment of full-thickness skin defect wounds in mice].
    Chen YQ; Zhou YQ; Wei Q; Xie XY; Liu XZ; Li DW; Shen ZA
    Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi; 2024 Apr; 40(4):323-332. PubMed ID: 38664026
    [No Abstract]   [Full Text] [Related]  

  • 3. Berberine-loaded MSC-derived sEVs encapsulated in injectable GelMA hydrogel for spinal cord injury repair.
    Wang H; Tang Q; Lu Y; Chen C; Zhao YL; Xu T; Yang CW; Chen XQ
    Int J Pharm; 2023 Aug; 643():123283. PubMed ID: 37536642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bioactive injectable self-healing anti-inflammatory hydrogel with ultralong extracellular vesicles release synergistically enhances motor functional recovery of spinal cord injury.
    Wang C; Wang M; Xia K; Wang J; Cheng F; Shi K; Ying L; Yu C; Xu H; Xiao S; Liang C; Li F; Lei B; Chen Q
    Bioact Mater; 2021 Aug; 6(8):2523-2534. PubMed ID: 33615043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human mesenchymal stem-derived extracellular vesicles improve body growth and motor function following severe spinal cord injury in rat.
    Nakazaki M; Lankford KL; Yamamoto H; Mae Y; Kocsis JD
    Clin Transl Med; 2023 Jun; 13(6):e1284. PubMed ID: 37323108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intranasal delivery of small extracellular vesicles from specific subpopulation of mesenchymal stem cells mitigates traumatic spinal cord injury.
    Sun Y; Zhao J; Liu Q; Xu Y; Qin Y; He R; Zheng L; Xie Y; Li C; Wu T; Cao Y; Duan C; Lu H; Hu J
    J Control Release; 2024 May; 369():335-350. PubMed ID: 38519036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small extracellular vesicles derived from mesenchymal stem cell facilitate functional recovery in spinal cord injury by activating neural stem cells
    Hu X; Liu Z; Zhou X; Jin Q; Xu W; Zhai X; Fu Q; Qian H
    Front Cell Neurosci; 2022; 16():954597. PubMed ID: 36106012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A MnO
    Li L; Xiao B; Mu J; Zhang Y; Zhang C; Cao H; Chen R; Patra HK; Yang B; Feng S; Tabata Y; Slater NKH; Tang J; Shen Y; Gao J
    ACS Nano; 2019 Dec; 13(12):14283-14293. PubMed ID: 31769966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small extracellular vesicles derived from umbilical cord mesenchymal stem cells repair blood-spinal cord barrier disruption after spinal cord injury through down-regulation of Endothelin-1 in rats.
    Xue C; Ma X; Guan X; Feng H; Zheng M; Yang X
    PeerJ; 2023; 11():e16311. PubMed ID: 37927780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-421-3p-abundant small extracellular vesicles derived from M2 bone marrow-derived macrophages attenuate apoptosis and promote motor function recovery via inhibition of mTOR in spinal cord injury.
    Wang J; Rong Y; Ji C; Lv C; Jiang D; Ge X; Gong F; Tang P; Cai W; Liu W; Fan J
    J Nanobiotechnology; 2020 May; 18(1):72. PubMed ID: 32404105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small extracellular vesicles released by infused mesenchymal stromal cells target M2 macrophages and promote TGF-β upregulation, microvascular stabilization and functional recovery in a rodent model of severe spinal cord injury.
    Nakazaki M; Morita T; Lankford KL; Askenase PW; Kocsis JD
    J Extracell Vesicles; 2021 Sep; 10(11):e12137. PubMed ID: 34478241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro electrical fields induced MSC-sEVs attenuate neuronal cell apoptosis by activating autophagy via lncRNA MALAT1/miR-22-3p/SIRT1/AMPK axis in spinal cord injury.
    Li K; Liu Z; Wu P; Chen S; Wang M; Liu W; Zhang L; Guo S; Liu Y; Liu P; Zhang B; Tao L; Ding H; Qian H; Fu Q
    J Nanobiotechnology; 2023 Nov; 21(1):451. PubMed ID: 38012570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration.
    Hu H; Dong L; Bu Z; Shen Y; Luo J; Zhang H; Zhao S; Lv F; Liu Z
    J Extracell Vesicles; 2020 Jun; 9(1):1778883. PubMed ID: 32939233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Astrocyte-derived sEVs alleviate fibrosis and promote functional recovery after spinal cord injury in rats.
    Lu Y; Chen C; Wang H; Du R; Ji J; Xu T; Yang C; Chen X
    Int Immunopharmacol; 2022 Dec; 113(Pt A):109322. PubMed ID: 36257256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implantation of a functional TEMPO-hydrogel induces recovery from rat spinal cord transection through promoting nerve regeneration and protecting bladder tissue.
    Zhang Y; Li L; Mu J; Chen J; Feng S; Gao J
    Biomater Sci; 2020 Mar; 8(6):1695-1701. PubMed ID: 31989134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural stem cell-derived small extracellular vesicles attenuate apoptosis and neuroinflammation after traumatic spinal cord injury by activating autophagy.
    Rong Y; Liu W; Wang J; Fan J; Luo Y; Li L; Kong F; Chen J; Tang P; Cai W
    Cell Death Dis; 2019 Apr; 10(5):340. PubMed ID: 31000697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury.
    Li Z; Zhao T; Ding J; Gu H; Wang Q; Wang Y; Zhang D; Gao C
    Bioact Mater; 2023 Jan; 19():550-568. PubMed ID: 35600969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small extracellular vesicles derived from tendon stem cells promote the healing of injured Achilles tendons by regulating miR-145-3p.
    Zhang T; Wu Y; Li X; Zhang A; Liu H; Shi M; Zhang Z; Lu W; Guo Y; Tang X; Cui Q; Li Z
    Acta Biomater; 2023 Dec; 172():280-296. PubMed ID: 37806377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of Human Mesenchymal Stem-Cell-Derived Exosomes Immobilized in an Adhesive Hydrogel for Effective Treatment of Spinal Cord Injury.
    Li L; Zhang Y; Mu J; Chen J; Zhang C; Cao H; Gao J
    Nano Lett; 2020 Jun; 20(6):4298-4305. PubMed ID: 32379461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A decellularized spinal cord extracellular matrix-gel/GelMA hydrogel three-dimensional composite scaffold promotes recovery from spinal cord injury
    He W; Zhang X; Li X; Ju D; Mao T; Lu Y; Gu Y; Qi L; Wang Q; Wu Q; Dong C
    J Mater Chem B; 2022 Aug; 10(30):5753-5764. PubMed ID: 35838078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.