These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36188173)

  • 1. Modulating break types induces divergent low band EEG processes during post-break improvement: A power spectral analysis.
    Wang S; Zhu L; Gao L; Yuan J; Li G; Sun Y; Qi P
    Front Hum Neurosci; 2022; 16():960286. PubMed ID: 36188173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Reorganization of Functional Connectivity During Post-Break Task Reengagement.
    Gao L; Yu J; Zhu L; Wang S; Yuan J; Li G; Cai J; Qi X; Sun Y; Sun Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():157-166. PubMed ID: 35025746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of a mid-task break on the brain connectome in healthy participants: A resting-state functional MRI study.
    Sun Y; Lim J; Dai Z; Wong K; Taya F; Chen Y; Li J; Thakor N; Bezerianos A
    Neuroimage; 2017 May; 152():19-30. PubMed ID: 28257928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mid-Task Physical Exercise Keeps Your Mind Vigilant: Evidences From Behavioral Performance and EEG Functional Connectivity.
    Gao L; Zhu L; Hu L; Hu H; Wang S; Bezerianos A; Li Y; Li C; Sun Y
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():31-40. PubMed ID: 33052846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mid-Task Break Improves Global Integration of Functional Connectivity in Lower Alpha Band.
    Li J; Lim J; Chen Y; Wong K; Thakor N; Bezerianos A; Sun Y
    Front Hum Neurosci; 2016; 10():304. PubMed ID: 27378894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG alpha activity is associated with individual differences in post-break improvement.
    Lim J; Quevenco FC; Kwok K
    Neuroimage; 2013 Aug; 76():81-9. PubMed ID: 23523810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Rest-Break on Mental Fatigue Recovery Determined by a Novel Temporal Brain Network Analysis of Dynamic Functional Connectivity.
    Qi P; Gao L; Meng J; Thakor N; Bezerianos A; Sun Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):62-71. PubMed ID: 31725384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topographic electroencephalogram changes associated with psychomotor vigilance task performance after sleep deprivation.
    Gorgoni M; Ferlazzo F; Ferrara M; Moroni F; D'Atri A; Fanelli S; Gizzi Torriglia I; Lauri G; Marzano C; Rossini PM; De Gennaro L
    Sleep Med; 2014 Sep; 15(9):1132-9. PubMed ID: 25087194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single bout of passive exercise mitigates a mental fatigue-induced inhibitory control deficit.
    Ahn J; Tari B; Morava A; Prapavessis H; Heath M
    Exp Brain Res; 2023 Jul; 241(7):1835-1845. PubMed ID: 37256338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained Attention in Auditory and Visual Monitoring Tasks: Evaluation of the Administration of a Rest Break or Exogenous Vibrotactile Signals.
    Arrabito GR; Ho G; Aghaei B; Burns C; Hou M
    Hum Factors; 2015 Dec; 57(8):1403-16. PubMed ID: 26276365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploratory study of the acute and mid-term effects of using a novel dynamic meeting environment (Aeris
    Ammar A; Boujelbane MA; Simak ML; Fraile-Fuente I; Trabelsi K; Bouaziz B; Rizzi N; Schöllhorn WI
    Front Hum Neurosci; 2023; 17():1282728. PubMed ID: 38077188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perfusion Imaging of Fatigue and Time-on-Task Effects in Patients With Parkinson's Disease.
    Liu W; Liu J; Bhavsar R; Mao T; Mamikonyan E; Raizen D; Detre JA; Weintraub D; Rao H
    Front Aging Neurosci; 2022; 14():901203. PubMed ID: 35754969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing the Effects of Three Cognitive Tasks on Indicators of Mental Fatigue.
    Smith MR; Chai R; Nguyen HT; Marcora SM; Coutts AJ
    J Psychol; 2019; 153(8):759-783. PubMed ID: 31188721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-Based Spectral Analysis Showing Brainwave Changes Related to Modulating Progressive Fatigue During a Prolonged Intermittent Motor Task.
    Suviseshamuthu ES; Shenoy Handiru V; Allexandre D; Hoxha A; Saleh S; Yue GH
    Front Hum Neurosci; 2022; 16():770053. PubMed ID: 35360287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ICA-Derived EEG Correlates to Mental Fatigue, Effort, and Workload in a Realistically Simulated Air Traffic Control Task.
    Dasari D; Shou G; Ding L
    Front Neurosci; 2017; 11():297. PubMed ID: 28611575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Caffeine Intake on Cognitive Performance Related to Total Sleep Deprivation and Time on Task: A Randomized Cross-Over Double-Blind Study.
    Quiquempoix M; Sauvet F; Erblang M; Van Beers P; Guillard M; Drogou C; Trignol A; Vergez A; Léger D; Chennaoui M; Gomez-Merino D; Rabat A
    Nat Sci Sleep; 2022; 14():457-473. PubMed ID: 35321359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 'I need a break': the effect of choice of rest break duration on vigilance.
    Waldfogle GE; Garibaldi AE; Neigel AR; Szalma JL
    Ergonomics; 2021 Dec; 64(12):1509-1521. PubMed ID: 34328396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rest improves performance, nature improves happiness: Assessment of break periods on the abbreviated vigilance task.
    Finkbeiner KM; Russell PN; Helton WS
    Conscious Cogn; 2016 May; 42():277-285. PubMed ID: 27089530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beneficial effects of acute high-intensity exercise on electrophysiological indices of attention processes in young adult men.
    Du Rietz E; Barker AR; Michelini G; Rommel AS; Vainieri I; Asherson P; Kuntsi J
    Behav Brain Res; 2019 Feb; 359():474-484. PubMed ID: 30465815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG Spectral Feature Modulations Associated With Fatigue in Robot-Mediated Upper Limb Gross and Fine Motor Interactions.
    Dissanayake UC; Steuber V; Amirabdollahian F
    Front Neurorobot; 2021; 15():788494. PubMed ID: 35126082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.